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Abstract. This paper proposes an unsupervised cross-modality domain
adaptation approach based on pixel alignment and self-training. Pixel
alignment transfers the scans in ceT1 to that in hrT2, helping to reduce
domain shift in the training segmentation model. Self-training adapts
the decision boundary of the segmentation network to fit the distribu-
tion of hrT2 scans. Experiment results show that PAST has outper-
formed the non-UDA baseline significantly, and it received rank two on
the CrossMoDA2022 validation phase Leaderboard with a mean Dice
score of 0.8511.

Keywords: unsupervised domain adaptation · pixel alignment · self-
training.

1 Introduction

CrossModa challenge [6,7,8] aims to segment two types of critical intracranial
objects involved in the treatment planning of vestibular schwannoma (VS): the
tumor and cochlea. While contrast-enhanced T1 (ceT1) Magnetic Resonance
Imaging (MRI) scans are commonly used for VS segmentation, recent work has
demonstrated that high-resolution T2 (hrT2) imaging could be a reliable, safe,
and lower-cost alternative to ceT1. Therefore, the challenge participants are
asked to provide a segmentation model of VS and cochlea on hrT2 scans based
on unsupervised domain adaptation (UDA) using only the information of labeled
ceT1 scans and unlabeled hrT2 scans.

To solve this problem, we propose an effective and intuitive UDA method
combining pixel-level alignment and self-training (PAST). Firstly, we transfer
labeled images from the ceT1 domain to the hrT2 domain so that images can
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be aligned into the same distribution. Secondly, the model is further trained on
pseudo labels generated from transferred ceT1 scans and hrT2 scans, which find
a better decision boundary on the hrT2 domain. The experimental results show
that our method greatly reduces the domain shift and achieves 2nd place with
a dice score of 0.8511 on the validation set.

2 Methods and Experimental Methods

2.1 Method Overview

We introduce our method in this section. Our method has two major parts:
pixel-level alignment and the self-training stage.

First, we follow [2] to learn a mapping from the source domain to the target
domain, i.e., we transfer ceT1 scans to hrT2 scans. After doing so, we can use
synthesized hrT2 scans to train a segmentation model using supervised learning.
As shown in Figure 2, the model achieves the domain adaptation using NiceGAN
[1] (i.e., an extension method of CycleGAN), which reuses discriminators for
encoding to improve the efficiency and effectiveness of training.

Fig. 1. Visualization for transferred ceT1 scans. From left to right: (1) ceT1 scans. (2)
synthesized hrT2 scans without segmentor. (3) synthesized hrT2 scans with segmentor.
(4) cochlea ground truth.

Different from the model we have used in CrossmModa2021[11], we follow
[12] and add an extra segmentor to segment transferred ceT1 scans. As shown
in Figure 1, the segmentor helps preserve the detailed structures, especially for
small and inconspicuous cochlea.

Second, we apply self-training to further improve the decision boundary of
the segmentation model. Similar to [5], we introduce a super parameter q of
the pixel portion. We iteratively generate the pseudo label ŷc using the top q
of pixels in segmentation output yc with a higher probability of retraining the
model. The overall training process of the proposed method is summarized in
Algorithm 1.
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Fig. 2. Flowchart of NiceGAN [1]. It extracts features from the input image with the
shared Encoder. The Classifier from the Discriminator distinguishes the real or fake
feature vectors. The Decoder from the Generator generates transferred images. The
Segmentor segments transferred ceT1 scans with a 2d label.

All models are implemented using PyTorch 1.9. Pixel-level alignment model
runs on a single V100 GPU with 16 GB memory, and the self-training model
runs on a single TIAN V GPU with 12 GB memory. All training data are col-
lected from CrossModa training set [8,6], and we verify our model on the Cross-
Moda2022 validation set.

Algorithm 1 training process of the proposed method

1: Initialize ceT1 scans images and label (Xs, ys), hrT2 scans imagesXt, Segmentation
network S, Image translation network T

2: Train network T with Xs and Xt

3: Transfer ceT1 scans Xs to X̂s using T
4: Train network S with (X̂s, ys)
5: Initialize concat scans images Xc = {X̂s, Xt}, self-training segmentation network

S0 = S
6: for k ← 1 to K do
7: input Xc into Sk−1 and generate pseudo label ŷk

c with a fixed portion qk
8: Initialize Sk ← Sk−1

9: Train Sk with (Xc, ŷk
c )

10: end for
11: return Sk

2.2 Experiments

For the preprocessing step, we observe that the segmentation targets are located
in the center of the image, so we take the center area of the image as the region
of interest (ROI). For the image translation, the 2D images with a range of
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[0 : W, 0 : H] are cropped into the 2D ROI with a range of [ 3W16 : 13W
16 , 3H

16 : 13H
16 ].

For the 3D segmentation, the volumetric data ([0 : W, 0 : H, 0 : D]) will be
cropped into the 3D ROI with a range of [ 3W16 : 13W

16 , 3H
16 : 13H

16 , 0 : D]. After
then, the intensity values in ROI are normalized by rescaling to [0− 255]

In the pixel alignment stage, we adopt NICE-GAN [1] on 2D transverse
slides of the ROIs, transferring ceT1 to hrT2. We then concatenate the syn-
thesized 2D hrT2 slides to a 3D volumetric image. For 3D segmentation, we
follow the nnUNet framework [3]. Several research settings are implemented. We
select nnUnet and ResUNet(i.e., an extended version for nnUnet with ResNet
encoder) as our segmentation model. First, we train the models with paired syn-
thesized ceT1 scans and labels. We named the above two models nnUNetPA
and ResUNetPA. The self-training stage generally follows the Algorithm 1.
The nnUnets (nnUNetPA and ResUNetPA) are used as pretrain models for self-
training, i.e. S0 in Algorithm 1. The synthesized images and pseudo labels are
derived from the corresponding image-to-image translation models and nnUnets,
respectively. In practice, we set the initial q to 0.6, the maximum iteration K of
self-training to 2, and the initial learning rate to 0.008. We name these model
as nnUNetPAST2 and ResUNetPAST2.

As shown in Table 1, our models perform well on cochlea while having some
problems on VS. We notice a appearance gap on VS between London data (Cross-
Moda 2021 cases) and Tilburg data(CrossModa 2022 cases). The gap causes
mode collapse on our generation model and performance drop on segmenting
the VS. Our model achieved the previous SOTA on VS on CrossModa2021[13]
(we name this model as PAST1.0). However, the results shown in Table 2 indi-
cate that PAST1.0 performs not so well on Tilburg data due to a small domain
gap between these two datasets. To solve this problem, we incrementally train
PAST1.0 with two extra self-training stages (with only hrT2 training data) and
name it as IResUNetPAST2. As shown in Table 2, IResUNetPAST2 improves
the performance on Tilburg dataset. Finally, we combine the above models (i.e.,
PAST1.0 to segment VS on the London dataset, IResUNetPAST2 to segment VS
on the Tilburg dataset, and nnUNetPAST2 to segment cochlea) and achieve the
best results. We thus name it as PAST2.0, raising the overall Dice to 0.8511.

Table 1. Segmentation results for selected model.

Model Name VS Dice Cochlea Dice Mean Dice

nnUnetPA 0.6716± 0.2564 0.8280± 0.0306 0.7498± 0.1306

ResUNetPA 0.6729± 0.2533 0.8246± 0.0294 0.7487± 0.1284

nnUNetPAST2 0.8095± 0.0960 0.8547± 0.0283 0.8320± 0.0716

ResUNetPAST2 0.8115± 0.0977 0.8515± 0.0297 0.8315± 0.0848

PAST1.0 0.7935± 0.2029 0.7677± 0.0525 0.7806± 0.1133

IResUNetPAST2 0.8381± 0.0794 0.8412± 0.0249 0.8386± 0.0774

PAST2.0(47.0) 0.8473± 0.0633 0.8547± 0.0283 0.8511± 0.0322
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Table 2. VS Segmentation results for selected model.

Model Name London data Dice Tilburg data Dice Mean Dice

nnUNetPAST2 0.8231± 0.1129 0.7959± 0.0728 0.8095± 0.0960

ResUNetPAST2 0.8281± 0.1049 0.7949± 0.0742 0.8115± 0.0848

PAST1.0 0.8705± 0.0646 0.7170± 0.2554 0.7935± 0.2014

IResUNetPAST2 0.8519± 0.0976 0.8243± 0.0520 0.8381± 0.0794

PAST2.0 0.8705± 0.0646 0.8243± 0.0520 0.8474± 0.0629
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