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Abstract. This paper proposes an unsupervised cross-modality domain
adaptation approach based on pixel alignment and self-training. Pixel
alignment transfers ceT1 scans to hrT2 modality, helping to reduce do-
main shift in the training segmentation model. Self-training adapts the
decision boundary of the segmentation network to fit the distribution of
hrT2 scans. Experiment results show that PAST has outperformed the
non-UDA baseline significantly, and it received rank-2 on CrossMoDA
validation phase Leaderboard with a mean Dice score of 0.8395.

Keywords: unsupervised domain adaptation · pixel alignment · self-
training.

1 Introduction

CrossModa challenge[5,6,7] aims to segment two critical brain structures in-
volved in the treatment planning of vestibular schwannoma (VS): the tumor and
the cochlea. While contrast-enhanced T1 (ceT1) Magnetic Resonance Imaging
(MRI) scans are commonly used for VS segmentation, recent work has demon-
strated that high-resolution T2 (hrT2) imaging could be a reliable, safe, and
lower-cost alternative to ceT1. Therefore, the participants are asked to provide
a segmentation model of VS and cochlea on hrT2 scans based on unsupervised
domain adaptation (UDA) using only the information of labeled ceT1 scans and
unlabeled hrT2 scans.

To solve this problem, we propose an effective and intuitive UDA method
combining pixel-level alignment and self-training (PAST). Firstly, we transfer
labeled images from the ceT1 domain to the hrT2 domain so that images can
be aligned into the same distribution. Secondly, the model is further trained on
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pseudo labels generated from transferred ceT1 scans and hrT2 scans, which find
a better decision boundary on the hrT2 domain. The experimental results show
that our method greatly reduces the domain shift and achieves 2nd place with
a dice score of 0.8395 on the validation set.

2 Methods and Experimental Methods

2.1 Method Overview

We introduce our method in this section. Our method has two major parts:
pixel-level alignment and the self-training stage.

First, we follow [2] to learn a mapping from the source domain to the target
domain, i.e., we transfer ceT1 scans to hrT2 scans. After doing so, we can use
synthesized hrT2 scans to train a segmentation model using supervised learning.
As shown in Figure 1, the model achieves the domain adaptation using NiceGAN
[1] (i.e., an extension method of CycleGAN), which reuses discriminators for
encoding to improve the efficiency and effectiveness of training.

Fig. 1. flowchart of NiceGAN[1]. It extracts feature from the input image with the
shared Encoder. The Classifer from the Discriminator distingguishes real or fake feature
vectors. The Decoder from the Generator generates transferred images.

Second, we apply self-training to further improve the decision boundary of
the segmentation model. Similar to [4], we introduce a super parameter q of the
pixel portion. We iteratively generate the pseudo label ŷc using the top q of
pixels in segmentation output yc with a higher probability to retrain the model.
Overall training process of the proposed method is summarized in Algorithm 1.

All models are implemented using the PyTorch 1.9. Pixel-level alignment
model runs on a single V100 GPU with 16 GB memory and self-training model
runs on a single TIAN V GPU with 12 GB memory. All training data used
are collected from CrossModa training set [7,5] and we verify our model on
crossModa validation set.
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Algorithm 1 training process of the proposed method

1: Initialize ceT1 scans images and label (Xs, ys), hrT2 scans images Xt, Segmentation
network S, Image translation network T

2: Train network T with Xs and Xt

3: Transfer ceT1 scans Xs to X̂s using T
4: Train network S with (X̂s, ys)
5: Initialize concat scans images Xc = {X̂s, Xt}, self-training segmentation network

S0 = S
6: for k ← 1 to K do
7: input Xc into Sk−1 and generate pseudo label ŷk

c with a fixed portion qk
8: Initialize Sk ← Sk−1

9: Train Sk with (Xc, ŷk
c )

10: end for
11: return Sk

2.2 Experiments

For the preprocessing step, we observe that the segmentation targets are located
in the center of the image, so we take the center area of the image as the region of
interest (ROI) (Figure 2). For the image translation, the 2D images with a range
of [0 : W, 0 : H] are cropped into the 2D ROI with a range of [W4 : 3W

4 , H
4 : 3H

4 ].
For the 3D segmentation, the volumetric data ([0 : W, 0 : H, 0 : D]) will be
cropped into the 3D ROI with a range of [W4 : 3W

4 , 3H
8 : 3H

4 , 0 : D]. After then,
the intensity values in ROI are normalized by rescaling to [0 − 255]

In the pixel alignment stage, we adopt NICE-GAN [1] on 2D transverse slides
of the ROIs, transferring ceT1 to hrT2. We then concatenate the synthesized
2D hrT2 slides to a 3D volumetric image. For 3D segmentation, we follow the
nnUNet framework [3]. Several research settings are implemented. First, we train
the models with paired synthesized hrT2 scans and labels. Since most data have
a dimension of 448 pixels, we thus call this model nnUnet448. However, we
notice that there’re two types of protocols in hrT2 with significantly different
appearances (one with a dimension of 448 pixels, called 448 scans, and another
with a dimension of 384 pixels, called 384 scans). We thus create a nnUnet384
model for those 384 scans. We evaluate the results of the two models on all data
and the results of their respective applicable data. We call the model in the latter
scenario as nnUnetCon.

The self-training stage generally follows the Algorithm 1. The nnUnets
(nnUnet448, nnUnet384 and nnUnetCon) are used as pretrain models for
self-training, i.e. S0 in Algorithm 1. The synthesized images and pseudo labels are
derived from the corresponding image-to-image translation models and nnUnets
respectively. In practice, we set the initial q to 0.6, the maximum iteration K of
self-training to 2, and the initial learning rate is set to 0.08. We name this model
as nnUetST2.

Apart from this, we train a ResUnet (i.e., an extended version for nnUnet
with ResNet encoder) following the above stages and name this model as Re-
sUnetST2. A combined version using nnUetST2 to segment cochlea and Re-
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Fig. 2. Croped images samples: a).ceT1 sample b).transfered 448 ceT1 sample
c).transfered 384 ceT1 sample d).label e).448 hrT2 sample f).384 hrT2 sample

sUnetST2 to segment VS has also been evaluated and achieves a better result.
We thus name it the proposed PAST.

3 Results

Table 1 shows the results for the aforementioned models. Compared to nnUnet
without DA, i.e., training with ceT1 scans directly, both nnUnet448 and
nnUnet384 have a noticeable improvement, which shows the effectiveness of
the pixel alignment. However, the two models did not achieve satisfactory ac-
curacy because hrT2 modality itself has two different protocols. nnUnetCon
model solves this problem and further improves the performance with model en-
sembling. Furthermore, the experiments show that self-training achieves better
performance on overall Dice, but different network backbones behave differently
on either VS or cochlea segmentation (Figure 3). Thus, as our final proposed
method, PAST combines all the merits from the aforementioned network archi-
tectures and training techniques, raising the overall Dice to 0.8395.

Table 1. Segmentation results for selected model.

Model Name VS Dice Cochlea Dice Mean Dice

nnUnet without DA 0.0549± 0.1859 0.1905± 0.1643 0.1227± 0.1192

nnUnet448 0.7509± 0.2683 0.7818± 0.0425 0.7664± 0.1417

nnUnet384 0.5905± 0.3754 0.7870± 0.0413 0.6887± 0.1929

nnUnetCon 0.8281± 0.1679 0.7949± 0.0332 0.8115± 0.0848

nnUnetST2 0.8553± 0.0871 0.8089± 0.0334 0.8321± 0.0435

ResUnetST2 0.8700± 0.0657 0.7820± 0.0295 0.8260± 0.0349

PAST 0.8700± 0.0657 0.8089± 0.0335 0.8395± 0.0328



PAST 5

Fig. 3. Visual results of segmentation output : a).nnUnet without DA b).nnUnet448
c).nnUnet384 d).nnUnetST2 e).ResUnetST2 ; Sample id : 1).211(448) 2).213(384)
3).214(448) 4).240(384)
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