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Abstract. The purpose of this study is to apply and evaluate out-of-the-
box deep learning frameworks for the crossMoDA challenge. We use the
CUT model (https://github.com/taesungp/contrastive-unpaired-
translation) for domain adaptation from contrast-enhanced T1 MR to
high-resolution T2 MR. As data augmentation, we generated additional
images with vestibular schwannomas with lower signal intensity. For the
segmentation task, we use the nnU-Net framework (https://github.c
om/MIC-DKFZ/nnUNet). Our final submission achieved a mean Dice score
of 0.8299±0.0465 in the validation phase.

1 Introduction

Many publications on deep learning in medical image analysis focus on novel net-
work architectures or training workflows to enhance performance. However, spe-
cialized methods make it difficult for other researchers to reproduce the published
results or apply them to different datasets or tasks. Thus, publicly available
generic models may be a good choice of methods, especially in medical imaging
where reproducibility and generalizability are critical to be actually used in clini-
cal practice [5]. The purpose of this study is to apply and evaluate out-of-the-box
deep learning frameworks for the crossMoDA (Cross-Modality Domain Adapta-
tion for Medical Image Segmentation) challenge (https://crossmoda.grand-ch
allenge.org/). We use CUT (https://github.com/taesungp/contrastive-
unpaired-translation) [6], a generic model for unpaired image-to-image trans-
lation based on patchwise contrastive learning and adversarial learning, to adapt
contrast-enhanced T1-weighted MR images (ceT1 domain) to domain to high-
resolution T2-weighted MR images (hrT2 domain). For the segmentation task in
the hrT2 domain, we utilize nnU-Net (https://github.com/MIC-DKFZ/nnUNet)
[1], a framework that showed state-of-the-art performance in multiple medical
image segmentation challenges [3,2].

2 Methods

Since we focus on applications of the publicly available frameworks, there is
no modification to the mathematical setting or algorithm of the original works.

https://github.com/taesungp/contrastive-unpaired-translation
https://github.com/taesungp/contrastive-unpaired-translation
https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
https://crossmoda.grand-challenge.org/
https://crossmoda.grand-challenge.org/
https://github.com/taesungp/contrastive-unpaired-translation
https://github.com/taesungp/contrastive-unpaired-translation
https://github.com/MIC-DKFZ/nnUNet
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All implementations were performed with PyTorch [7] (version 1.7.1) on Nvidia
RTX 3090 GPUs (single GPU training).

2.1 Data

The official training set includes ceT1 images with segmentation labels from 105
patients and hrT2 images without labels from a separate set of 105 patients.
The vestibular schwannomas (label 1) and cochleas (label 2) were manually
segmented in consensus by the treating neurosurgeon and physicist using both
the ceT1 and hrT2 images [8,9]. The official validation set includes hrT2 MR
images of 32 patients. As stated in the official challenge rules, no additional data
was included.

2.2 Preprocessing

Since the voxel spacings of the given training data are heterogeneous, we resam-
ple all cases to common voxel shaping of 0.6 × 0.6 × 1.0 mm. Labels were also
interpolated likewise for the ceT1 domain. For each case, the input volume is
scaled to [0.0, 1.0]. Then, a center z-axis is calculated as the average of x and y
coordinates of voxels with intensity higher than the 75th percentile of the whole
volume. We crop the input volume with a size of 256 × 256 pixels in xy-plane
around the center z-axis, resulting in an image shape of 256 × 256 × N voxels.
Finally, we slice the volume data along the z-axis to acquire N images with the
size of 256 × 256 pixels because the CUT model only supports 2D images.

2.3 Domain Adaptation

We employ two model configurations in the official PyTorch implementation of
CUT, CUT and FastCUT, to train models to perform domain adaptation from
ceT1 to hrT2 domain on the training set using the default options except that
no resizing or cropping is performed and the number of epochs with the initial
learning rate and the number of epochs with decaying learning rate are both set
to 25.

We apply the trained domain adaptation model on all ceT1 images in the
training set to acquire fake hrT2 images. The generated fake hrT2 images are
stacked along the z-axis to reconstruct a volume data for each case in the training
set.

2.4 Segmentation

We use the default 3D full resolution U-Net configuration of the nnU-Net frame-
work for training and inference for the segmentation task except that the total
epochs for training was set to 250.

The fake hrT2 volumes and labels from the corresponding ceT1 images from
the training set are used for training segmentation models. We hereafter refer
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to the nnU-Net model trained using fake hrT2 images generated by our trained
CUT model as simply CUT, and likewise for FastCUT.

On MR T2 imaging, vestibular schwannomas are generally hyperintense but
some tumors can show heterogeneous signal intensity [4]. To introduce hetero-
geneity of tumor signals to mimic such clinical characteristics, we generate ad-
ditional training data by reducing the signal intensity of the labeled vestibular
schwannomas by 50% (hereafter referred to as DA). Thus, with DA, 210 cases
were used as training data instead of 105 cases. We evaluate segmentation results
of models trained on the original training data and the data with DA.

Fig. 1. Overview of our implementation of unpaired image translation with CUT and
segmentation with nnU-Net. Training data is augmented by generating images with
tumor signals reduced by 50% (referred to as DA).

3 Results

All results are obtained via the validation leaderboard of the crossMoDA chal-
lenge. Mean Dice scores are used to compare experiments, although other metrics
including Dice scores and average symmetric surface distances (ASSD) for each
label are also provided. Although five-fold cross-validation is recommended for
optimal usage of nnU-Net, due to lack of time and computing power consider-
ing the challenge environment, segmentation models trained on the first fold are
tested on the validation set for comparison of CUT and FastCUT (Table 1).

All metrics showed better results for CUT compared to FastCUT. Therefore,
we choose CUT for running full five-fold cross-validations and evaluating the
effect of DA. Table 2 shows results from ensembles of five-fold cross-validations
of CUT trained with and without DA.
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Table 1. Comparison of results on the validation set between segmentation models
trained on images generated by CUT and FastCUT. Results are based on the first fold
of five-fold cross-validation workflow in the nnU-Net framework.

Experiment Mean Dice Tumor Dice Tumor ASSD Cochlea Dice Cochlea ASSD

CUT 0.7606±0.1357 0.7098±0.2663 2.5870±4.2764 0.8113±0.0293 0.1829±0.0420

FastCUT 0.7377±0.1553 0.6681±0.2972 4.5624±5.9722 0.8075±0.0408 0.1994±0.0577

Table 2. Comparison of results on the validation set of CUT trained with and without
DA. Results are based on five-fold cross-validations.

Experiment Mean Dice Tumor Dice Tumor ASSD Cochlea Dice Cochlea ASSD

CUT w/o DA 0.7703±0.1428 0.7217±0.2817 1.6655±1.8147 0.8188±0.0219 0.1765±0.0340

CUT w/ DA 0.8299±0.0465 0.8375±0.0834 1.2940±1.2373 0.8223±0.0235 0.1720±0.0369

We submitted the ensemble of five-fold cross-validations of CUT with DA as
the final submission for the challenge. The evaluation metrics showed improve-
ments with DA not only for vestibular schwannomas but also for cochlea even
though DA involved only altering the signal intensity of the vestibular schwan-
nomas.

4 Discussion

With a mean Dice score of 0.8299, our method ranks among the top 10 on
the validation leaderboard on the submission deadline. Our results show pub-
licly available generic deep learning frameworks can achieve a certain degree of
performance in medical imaging without a novel network or methodology. This
study involves a limited range of hyperparameters due to the circumstance of
a challenge. Further experiments on different preprocessing and data augmen-
tation may enhance performance. Also, comparison with other out-of-the-box
frameworks is warranted.
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