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3:40pm - Challenge presentation (25 minutes)

4:05pm – Oral Session Task 1 (40 minutes)
MAI: “Multi-view Cross-Modality MR Image Translation for Vestibular Schwannoma and Cochlea Segmentation”

Bogyeong Kang, Hyeonyeong Nam), Ji-Wung, Keun-Soo Heo, Tae-Eui Kam 
ne2e: “Unsupervised Domain Adaptation in Semantic Segmentation Based on Pixel Alignment and Self-Training (PAST)”

Hexin Dong, Fei Yu, Mingze Yuan, Jie Zhao, Bin Dong, Li Zhang,  Luyi Han, Yunzhi Huang, Tao Tan, Ritse Mann
LaTIM: “Tumor blending augmentation using one-shot generative learning for vestibular schwannoma and cochlea cross-modal segmentation”

Guillaume Sallé, Pierre-Henri Conze, Julien Bert, Nicolas Boussion, Ulrike Schick, Dimitris Visvikis, Vincent Jaouen

4:45pm – Sponsor presentation: NVIDIA (5 minutes)

4:50pm – Task 1: Evaluation design and results announcement  (20 minutes)

5:10pm – Oral Session Task 2 (20 minutes)
Super Polymerization: “Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma Segmentation and Koos Grade  

Prediction based on Semi-Supervised Contrastive Learning”
Luyi Han, Yunzhi Huang, Tao Tan, Ritse Mann

SJTU_EIEE_2-426Lab: “Image Translation-Based Unsupervised Cross-Modality Domain Adaptation for Medical Image Segmentation”
Tao Yang, Lisheng Wang

5:40pm – Task 2: Evaluation design and results announcement (10 minutes)

5:50pm - Conclusion
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Introduction Challenge Description Results Next Steps

Supervised learning

Underlying assumption of supervised training on data distributions:

Source (Training) = Target (Test)

Source Target
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Domain shift in medical applications

1 Different acquisition protocols:
- Scanner characteristic (manufacturer, strength)
- Sequence parameters 
- Type of acquisition (axial, coronal, sagittal, 
isotropic - slice thickness)

2 Different imaging modalities:
CT vs MR
Contrast-enhanced T1 vs T2 

In practice:
Source (Training) ≠ Target (Test)

Source Target
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Introduction Challenge Description Results Next Steps

CNNs have been shown to have poor generalization capability 



Unsupervised Domain Adaptation (UDA)

Source Target

Goal: Bridging the domain distribution discrepancy between the source domain and the target domain 
without any target labelled data.
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Introduction Challenge Description Results Next Steps



Various UDA approaches...

Transforming the source data in target-like data:
→ data augmentation
→ generative models (e.g., CycleGAN) [4,6]

Minimizing the discrepancy between the feature distributions:
→ distribution discrepancy loss
→ discriminative adversarial loss [1,2,3,4,6]

Self-training:
→ self-supervision via pretext tasks [5]
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Introduction Challenge Description Results Next Steps

Large range of techniques can be used 



… tested on different problems

Traumatic brain injuries [1]

Liver Segmentation [2]

White Matter Lesions [5]

Cardiac structure segmentation [3,4,6]

Need for a benchmark on a large, publicly available, multi-class dataset

Public Large testing set (>20) Multi-Class Problem Cross-modality
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Introduction Challenge Description Results Next Steps



Vestibular Schwannoma

• A benign (non-cancerous) slow growing tumour.
• Arises from one of the balance nerves.
• Tumours may be found by accident or because patients present symptoms (e.g. hearing loss, balance disturbance).
• 1 in 1,000 people will be diagnosed with a VS in their lifetime.

Introduction Challenge Description Results Next Steps

8



Current management

Choice based on:
• Tumour’s growth
• Symptomatic vs asymptomatic
• Koos grade: quantify the impact of the tumour on surrounding brain structures (e.g. brainstem)

Introduction Challenge Description Results Next Steps
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Surveillance Stereotactic Radiosurgery Surgery



Koos grading system

Introduction Challenge Description Results Next Steps
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Classification system for VS that captures many of 
the characteristics that treatment decisions are 
typically based on.

Used in clinical routine for decision-making.



Need for automated segmentation tools
Measuring tumour’s growth:
• Linear measurement (maximal diameter)

• Volumetric assessment

à more accurate and sensitive method 
à superior at detecting subtle growth

Introduction Challenge Description Results Next Steps
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Stereotactic Radiosurgery: 
requires accurate, individualised contouring of:
• clinical target volume (VS tumour)
• "organs" at risk (cochleas)

Challenge task: automatic segmentation tumour and cochleas



Imaging protocol

Introduction Challenge Description Results Next Steps
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Gold standard for VS

Risks associated with 
gadolinium-containing 
contrast agents

Contrast-Enhanced T1 (ceT1) High-Resolution T2 (hrT2)

Gold standard for cochleas

Growing interest in using 
non-contrast imaging 
sequences for VS

10 times more cost-
efficient than ceT1 
imaging



crossMoDA 2021: Challenge task and dataset
Dataset:
● All images were obtained on a 32-channel Siemens Avanto 1.5T scanner
● Image resolution: 0.5×0.5×1.0mm or 0.5×0.5×1.5mm
● Consecutive patients

Introduction Challenge Description Results Next Steps
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A challenging task

ceT1 hrT2

Vestibular Schwannoma

- Two sides 
- Very small structure (92 ±14 mm3 - 0.002% 

voxels)
- Unclear borders on ceT1
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Cochlea

ceT1 hrT2

- Uniform on ceT1
- Borders may not be clear on hrT2

Introduction Challenge Description Results Next Steps



crossMoDA 2021: Main insights
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Introduction Challenge Description Results Next Steps

• Large variability of techniques

• Cross-modality domain adaptation is a challenging task. 
On the validation leaderboard:

• 47 teams (85%) underperformed (<60% mean Dice 
Score).

• Only 5 teams (10%) reached a high performance (>80% 
mean Dice Score).

• The top performing teams used a similar unsupervised 
approach 
(CycleGAN + nnUnet + self-supervision).

More details in our Medical Image Analysis paper.



crossMoDA 2021: Main limitations
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Domain gap between the source and target images is large, as it corresponds to different modalities
The intra-domain data was homogeneous:

à Lack of robustness may occur when the same modalities are acquired with different settings

Tilburg study (Cornelissen et al):
- Fully supervised model trained on London data
- London (testing data): mean dice score of 92.0±5.1% 
- Tilburg (testing data): mean dice score of 64.5±32.%

Introduction Challenge Description Results Next Steps



crossMoDA 2022: multi-institutional dataset
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Introduction Challenge Description Results Next Steps

London Tilburg

Scanner Siemens Avanto 1.5T Philips Ingenia 1.5T

ceT1

Sequence MPRAGE 3D-FFE

In-plane res 0.4x0.4mm 0.8x0.8mm

Slice thickness 1.0 to 1.5mm 1.5mm

In-plane matrix 512x512 256x256

hrT2

Sequence 3D CISS or FIESTA 3D-TSE

In-plane res 0.4x0.4mm 0.5x0.5mm

Slice thickness 1.0 to 1.5 mm 1.0 mm

In-plane matrix 384x384 or 448x448 512×512



crossMoDA 2022: doubling dataset size
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Introduction Challenge Description Results Next Steps

105+105=210 105+105=210

Contrast-enhanced T1 T2

Training

32+32=64

T2

Validation

137+134

T2

Testing



105+105=210 105+105=210

Contrast-enhanced T1 T2

Training

32+32=64

T2

Validation

137+134

T2

Testing

crossMoDA 2022: new task
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Introduction Challenge Description Results Next Steps

Classification task: Koos grade classification

+Koos grade
+GIF parcellation
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Multi-view Cross-Modality MR Image Translation for 
Vestibular Schwannoma and Cochlea Segmentation
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Goal
▪ Segmentation of VS and Cochlea in hr𝐓𝟐 scans

Training Validation Testing

contrast-enhanced 𝐓𝟏 (ce𝐓𝟏 ) high-resolution 𝐓𝟐 (hr𝐓𝟐) high-resolution 𝐓𝟐 (hr𝐓𝟐) high-resolution 𝐓𝟐 (hr𝐓𝟐)

Annotation label O Annotation label X
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Approach
Step1: Image translation

Image 
Translation

ce𝐓𝟏 Pseudo hr𝐓𝟐

Annotation labels of  ce𝐓𝟏 Annotation labels of  ce𝐓𝟏

Step2: Segmentation

Pseudo hr𝐓𝟐

Step3: Self-training

Pseudo hr𝐓𝟐 & real hr𝐓𝟐

Self-Training Based Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma and Cochlea Segmentation (Shin et al)
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Motivation
Step1: Image translation

Image 
Translation

ce𝐓𝟏 Pseudo hr𝐓𝟐

Annotation labels of  ce𝐓𝟏 Annotation labels of  ce𝐓𝟏

Step2: Segmentation

Pseudo hr𝐓𝟐

Step3: Self-training

Pseudo hr𝐓𝟐 & real hr𝐓𝟐

• Preserve the structures in the ceT1

• Reflect the characteristics of the hrT2

Image translation performance↑

Segmentation performance↑ 
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Image translation

▪ CycleGAN (Zhu et al., 2017)

• use pixel-level cycle-consistent constraint
• use cycle-consistency loss: pixel-level reconstruction loss
• learn the mapping from the output domain to the input domain
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Image translation

▪ CUT (Park et al., 2020)

• use patch-level contrastive constraint
• constrain the features from the same location to be close
• calculate contrastive loss between randomly selected patches
• contain some patches less information of the source domain
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Image translation

▪ QS-Attn (Hu et al., 2022)

• use patch-level contrastive constraint
• select the domain-relevant patches
• better preserve the structures of VS & cochlea
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Importance of multi-view image translation

▪ Pixel-level cycle consistent constraint: better reflect intensity
▪ Patch-level contrastive constraint: better preserve structures

Real ce𝐓𝟏 Pseudo hr𝐓𝟐
(Pixel)

Pseudo hr𝐓𝟐
(Patch)

Real hr𝐓𝟐 Real ce𝐓𝟏 Pseudo hr𝐓𝟐
(Pixel)

Pseudo hr𝐓𝟐
(Patch)

Real hr𝐓𝟐

Cochlea VS
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Proposed framework



30

Proposed framework
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Proposed framework
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Proposed framework
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Proposed framework
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Results: validation phase

Translation
model

Dice score (↑) ASSD (↓)

VS Cochlea Mean VS Cochlea

CycleGAN 0.7798
(±0.1901)

0.8066
(±0.0323)

0.7932
(±0.0972)

0.8750
(±0.9222)

0.2422
(±0.1608)

QS-Attn 0.7779
(±0.1825)

0.8158
(±0.0287)

0.7968
(±0.0929)

0.6667
(±0.3891)

0.2365
(±0.1573)

Proposed 0.8043
(±0.1656)

0.8158
(±0.0289)

0.8101
(±0.0863)

0.5742
(±0.2461)

0.2387
(±0.1581)
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Results: validation phase

Translation
model

Dice score (↑) ASSD (↓)

VS Cochlea Mean VS Cochlea

CycleGAN
(w/o. ST)

0.7798
(±0.1901)

0.8066
(±0.0323)

0.7932
(±0.0972)

0.8750
(±0.9222)

0.2422
(±0.1608)

QS-Attn
(w/o. ST)

0.7779
(±0.1825)

0.8158
(±0.0287)

0.7968
(±0.0929)

0.6667
(±0.3891)

0.2365
(±0.1573)

Proposed
(w/o. ST)

0.8043
(±0.1656)

0.8158
(±0.0289)

0.8101
(±0.0863)

0.5742
(±0.2461)

0.2387
(±0.1581)

Proposed
(w. ST)

0.8520
(±0.0889)

0.8488
(±0.0235)

0.8504
(±0.0466)

0.4748
(±0.2072)

0.1992
(±0.1524)

* ST: self-training
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Conclusion

▪ Design a multi-view image translation framework

▪ Adopt CycleGAN & QS-Attn in parallel for image translation

▪ Reflect various perspectives (i.e., intensity & texture, structure)
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Thank you
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Appendix
▪CUT
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Appendix

▪ Preprocessing

1. Resample to 0.41 × 0.41 × 1.5

2. Slice 2D images along the axial plane

3. Center crop & resize to 256 × 256
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Appendix
▪Only CycleGAN w. Self-training

Translation
model

Dice score (↑) ASSD (↓)

VS Cochlea Mean VS Cochlea

CycleGAN
(w/o. ST)

0.7798
(±0.1901)

0.8066
(±0.0323)

0.7932
(±0.0972)

0.8750
(±0.9222)

0.2422
(±0.1608)

QS-Attn
(w/o. ST)

0.7779
(±0.1825)

0.8158
(±0.0287)

0.7968
(±0.0929)

0.6667
(±0.3891)

0.2365
(±0.1573)

Proposed
(w/o. ST)

0.8043
(±0.1656)

0.8158
(±0.0289)

0.8101
(±0.0863)

0.5742
(±0.2461)

0.2387
(±0.1581)

CycleGAN
(w. ST)

0.8234
(±0.1098)

0.8154
(±0.0278)

0.8194
(±0.0582)

0.8052
(±0.8004)

0.2318
(±0.1578)

Proposed
(w. ST)

0.8323
(±0.1017)

0.8265
(±0.0283)

0.8294
(±0.0546)

0.5273
(±0.2028)

0.2259
(±0.1570)

* ST: self-training
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Appendix
▪ nnUNet (Isensee et al., 2021)
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Unsupervised Domain Adaptation in Semantic Segmentation 
Based on Pixel Alignment and Self-Training (PAST)

Hexin Dong1  Fei Yu1  Mingze Yuan1   Jie Zhao1,2 Bin Dong4,3,2 Li Zhang1,2✉

1Center for Data Science, Peking University, Beijing, China 
2National Biomedical Imaging Center, Peking University, Beijing, China

3Center for Machine Learning Research, Peking University, Beijing, China
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✉ Corresponding author: Li Zhang (zhangli_pku@pku.edu.cn)
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Introduction
l Problem Setting：

p 3D Semantic Segmentation 

p Domain Adapataion

p Few shots learning ( 210 source images & 210 target images)

l Domain Adaptation：

p Pixel alignment method

p Feature alignment method

p Self training method
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l Preprocess :

p Center crop

p Normalization

Source Domain: Target Domain:

London data Tilburg data 2



46

PAST1.0[3] in CrossModa2021:

p We proposes an unsupervised cross-modality domain adaptation approach based on pixel 

alignment and self-training（PAST）.

p Pixel alignment stage aims to transfer ceT1 scans to hrT2 scans.

p Self training stage aims to finetune the model with generated hrT2 labels and ceT1 labels.

p PAST performs well on VS while have some problems on cochlea.

3[3]. !"#$% &'%()*+"$*,-) .$" /01')*2$%*&'%(*1%3*4$*/01%() 5%6-7"89$6"3*&':1$%*;317<1<$'%*$%*=":1%<$>*

="(:"%<1<$'%*216"3*'%*?$#"@*;@$(%:"%<*1%3*="@ABC81$%$%()*18D$9EFGHIJGKFGI)*FHFG
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l Pixel Alignment :
p NICEGAN[1] + nnUNet[2]

[1].Chen et.al. Reusing discriminators for encoding: Towards unsupervised image-to-image translation. CVPR 2020

[2].Isensee et.al. Automated design of deep learning methods for biomedical image segmentation. arXiv preprint

arXiv:1904.08128 

4
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l Pixel Alignment :
p Train two model with different architecture .

p Named as ResUnetPA and nnUnetPA.

l Results:

5

Model Name VS Dice Cochlea Dice Mean Dice

nnUnetPA 0.6716 0.8280 0.7498 

ResUnetPA 0.6729 0.8246 0.7487

From left to right: (1) ceT1 scans. (2) synthesized hrT2 scans without segmentor. 
(3) synthesized hrT2 scans with segmentor. (4) cochlea ground truth.
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l Self training:
p Set nnUnetPA/ResUnetPA as !!, # = % , &" = '. )
p Train two model based on nnUnet and ResUnet named as nnUnetPAST2 and 

ResUnetPAST2.

6
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Model Name VS Dice Cochlea Dice Mean Dice

nnUnetPA 0.6716 0.8280 0.7498 

ResUnetPA 0.6729 0.8246 0.7487

nnUNetPAST2 0.8095 0.8547 0.8320

ResUNetPAST2 0.8115 0.8515 0.8315

PAST1.0 0.7935 0.7677 0.7806

IResUNetPAST2 0.8381 0.8412 0.8386

PAST2.0 0.8474 0.8547 0.8511

Using nnUnetPAST2 to segment cochlea, IResUnetPAST2 to segment Tilburg data VS and 
PAST1.0 to segment London data VS achieves a better result. We named this combined version 
as PAST2.0. 

7

Model Name London data 
VS Dice

Tilburg data 
VS Dice Mean Dice

nnUNetPAST2 0.8231 0.7959 0.8095

ResUNetPAST2 0.8281 0.7949 0.8115

PAST1.0 0.8705 0.7170 0.7935

IResUNetPAST2 0.8519 0.8243 0.8381

PAST2.0 0.8705 0.8243 0.8474

p nnUnetPAST2/ResUnetPAST2 fails on Tilburg scans.

p Set PAST1.0 as !!, # = % , &" = '. ) and named it as 

IResUnetPAST2. 

l Results:.
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p We proposes an unsupervised cross-modality domain adaptation approach based on pixel 

alignment and self-training.

p PAST2.0 improves the cochlea results with the extra segmentor in pixel alignment stage.

p Experiment results show that PAST2.0 has outperformed the non-UDA baseline significantly.

p It received rank-2 on CrossMoDA2022 validation phase Leaderboard with a mean Dice score of 0.8511.

8
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p We proposes an unsupervised cross-modality domain adaptation approach based on pixel 

alignment and self-training.

p PAST2.0 improves the cochlea results with the extra segmentor in pixel alignment stage.

p Experiment results show that PAST2.0 has outperformed the non-UDA baseline significantly.

p It received rank-2 on CrossMoDA2022 validation phase Leaderboard with a mean Dice score of 0.8511.

8

THE END
Thank you for your listening

For any question, Please contact donghexin@pku.edu.cn. 9
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Vestibular schwanomma (VS) treatment planning 
Current clinical routine :

segmentation of VS : contrast-enhanced T1 MRI (ceT1)
segmentation of cochlea : high-resolution T2 MRI (hrT2)

Objective : 
develop unsupervised domain adaptation methods to use hrT2 only
→ cheaper and safer [1]

[1] Daniel H Coelho et al., “MRI surveillance of vestibular schwannomas without contrast enhancement: clinical and economic evaluation,” 2018
[2] Jonathan Shapey et al., “Segmentation of Vestibular Schwannoma from Magnetic Resonance Imaging: An Open Annotated Dataset and Baseline Algorithm,” 2021
[3] Reuben Dorent et al., “CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation,” 2022

2 / 10

 CrossMoDA 2022 challenge (task 1) [2],[3] : 
       - 210 ceT1 w/ labels for training (105 LDN, 105 ETZ)

       - 210 hrT2 w/o labels for training (105 LDN, 105 ETZ)

       - 64 hrT2 w/o labels for validation (32 LDN, 32 ETZ)



Proposed work/ow
1) Image-to-image (i2i) translation
using CycleGAN [4]. However :

[4] Jun-Yan Zhu et al., “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks,” in ICCV, 2017.

3 / 10



[4] Jun-Yan Zhu et al., “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks,” in ICCV, 2017.

[5] Joseph P Cohen et al., “How to Cure Cancer (in images) with Unpaired Image Translation,” in MIDL 2018.

Proposed work/ow
1) Image-to-image (i2i) translation
using CycleGAN [4]. However :

- small scale features (e.g. cochlea) may be lost [5]

3 / 10



- small scale features (e.g. cochlea) may be lost [5]

- some real hrT2 VS are large, hypersignal and/or 
heterogeneous. CycleGAN does not generate 
enough VS with these features. 

 
    Real hrT2 from validation set

[4] Jun-Yan Zhu et al., “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks,” in ICCV, 2017.

[5] Joseph P Cohen et al., “How to Cure Cancer (in images) with Unpaired Image Translation,” in MIDL 2018.

3 / 10

Proposed work/ow
1) Image-to-image (i2i) translation
using CycleGAN [4]. However :



- small scale features (e.g. cochlea) may be lost [5]

  → Objective 1 : feature preservation
  preserve cochlea before segmentation

- some real hrT2 VS are large, hypersignal and/or 
heterogeneous. CycleGAN does not generate 
enough VS with these features. 

 
    Real hrT2 from validation set

  

  → Objective 2 : data augmentation 
  increase VS variability (and therefore improve 
  segmentation robustness)

3 / 10

Proposed work/ow
1) Image-to-image (i2i) translation
using CycleGAN [4]. However :



[6] Tamar Rott Shaham et al., “Singan: Learning a generative model from a single natural image,” in ICCV 2019
[7] Guillaume Sallé et al., “Fake tumor insertion using one-shot generative learning for a cross-modal image segmentation,” in IEEE MIC 2021.

4 / 10

Proposed work/ow
1) Image-to-image (i2i) translation

2) Tumor blending augmentation 
(TBA) using SinGAN [6],[7]

Tumor diversity ++



SinGAN = multi-cascaded GAN at diIerent scales in 
a coarse-to-Jne fashion. Trained on one 2D image

Learning process :
 - Jrst GAN learns the composition
 - all others learn details at increasingly Jner scales

SinGAN for harmonization :
 - select a scale level
 - use all above generators on a pasted object

4 / 10

[6] Tamar Rott Shaham et al., “Singan: Learning a generative model from a single natural image,” in ICCV 2019
[7] Guillaume Sallé et al., “Fake tumor insertion using one-shot generative learning for a cross-modal image segmentation,” in IEEE MIC 2021.

Proposed work/ow
1) Image-to-image (i2i) translation

2) Tumor blending augmentation 
(TBA) using SinGAN [6],[7]

Tumor diversity ++



[6] Tamar Rott Shaham et al., “Singan: Learning a generative model from a single natural image,” in ICCV 2019
[7] Guillaume Sallé et al., “Fake tumor insertion using one-shot generative learning for a cross-modal image segmentation,” in IEEE MIC 2021.

Input OutputTraining image

SinGAN

→ 

Original SinGAN object harmonization [6]

Proposed TBA to change 
tumor appearance :
 - Scale tumor intensity by λ
(intensity scaling factor)
 - Apply SinGAN harmonization

5 / 10

Proposed work/ow
1) Image-to-image (i2i) translation

2) Tumor blending augmentation 
(TBA) using SinGAN [6],[7]

Tumor diversity ++



1) Image-to-image (i2i) translation

2) Tumor blending augmentation

3) Segmentation using i2i outputs 
and augmented data

[8] Fabian Isensee et al., “nnu-net: a self-conJguring method for deep learning-based biomedical image segmentation,” Nature methods, 2021.
[9] Hyungseob Shin et al., “COSMOS: Cross-Modality Unsupervised Domain Adaptation for 3D Medical Image Segmentation based on Target-aware Domain Translation and Iterative Self-Training,” 2022

6 / 10

Proposed work/ow

nnU-Net [8] :
 - 5-fold ensembling
 - 3D full-res
 - 500 epochs
iterative training [9]



[8] Fabian Isensee et al., “nnu-net: a self-conJguring method for deep learning-based biomedical image segmentation,” Nature methods, 2021.
[9] Hyungseob Shin et al., “COSMOS: Cross-Modality Unsupervised Domain Adaptation for 3D Medical Image Segmentation based on Target-aware Domain Translation and Iterative Self-Training,” 2022

6 / 10

Proposed work/ow
1) Image-to-image (i2i) translation

2) Tumor blending augmentation

3) Segmentation using i2i outputs 
and augmented data

4) Last segmentation network 
inferences on real hrT2

5) New segmentation model with i2i 
outputs, augmented data and real 
hrT2

We repeat step 4&5 three times

nnU-Net [8] :
 - 5-fold ensembling
 - 3D full-res
 - 500 epochs
iterative training [9]



Augmentation results on training pseudoT2 images. (a) original pseudoT2, (b) multiplied 
VS or cochlea (mask x 1.5 for VS, mask x 4.0 for cochlea), (c) augmented pseudoT2

TBA diversiJes 
VS appearance

TBA to recover cochlea

7 / 10

             (a)                             (b)                           (c)



Segmentation results on validation set. First row w/o TBA, second row w/ TBA (after 1st seg)

Quantitative scores on validation set (best submission)

8 / 10
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Conclusion

- New tumor blending data augmentation technique to diversify segmentation training sets

- Generative model based on a single 2D image applied to 3D volumes

- CrossMoDa 2022 challenge :
 

→ diversify VS appearance & enforce cochlea preservation

→ 1st place on the validation leaderboard

Quantitative scores on validation set (best submission)



[1] Daniel H Coelho et al., “MRI surveillance of vestibular schwannomas without contrast enhancement: clinical and 
economic evaluation,” 2018
[2] Jonathan Shapey et al., “Segmentation of Vestibular Schwannoma from Magnetic Resonance Imaging: An Open 
Annotated Dataset and Baseline Algorithm,” 2021
[3] Reuben Dorent et al., “CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for 
Vestibular Schwannoma and Cochlea Segmentation,” 2022
[4] Jun-Yan Zhu et al., “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks,” in ICCV, 2017.
[5] Joseph P Cohen et al., “How to Cure Cancer (in images) with Unpaired Image Translation,” in MIDL 2018.
[6] Tamar Rott Shaham et al., “Singan: Learning a generative model from a single natural image,” in ICCV 2019
[7] Guillaume Sallé et al., “Fake tumor insertion using one-shot generative learning for a cross-modal image 
segmentation,” in IEEE MIC 2021.
[8] Fabian Isensee et al., “nnu-net: a self-conJguring method for deep learning-based biomedical image segmentation,” 
Nature methods, 2021.
[9] Hyungseob Shin et al., “COSMOS: Cross-Modality Unsupervised Domain Adaptation for 3D Medical Image 
Segmentation based on Target-aware Domain Translation and Iterative Self-Training,” 2022
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Thank you ! Questions ?
 

Contact : guillaume.salle@univ-brest.fr



Main implementation details

Preprocessing (from [8]) : we resampled to 0.6x0.6x1 and extracted 256x256xZ volume by computing the x and y 
average location of voxels higher than the 75th percentile.

CycleGAN postprocessing : we applied Van Cittert Deconvolution algorithm (VC) for VS : 1 × 1 × 2.5 mm3 for 15 iterations.
For last cochlea segmentation inferences : we applied (VC) with parameters 0.4 × 0.4 × 1.5 mm³ for 15 iterations.

TBA :
 - VS from ETZ of volumes larger than 2340 mm3 with standard variation higher than 0.09 (6500 voxels for 29 images in 
total) were augmented with TBA using intensity scaling factors λ of 0.7, 1.2 and 1.5.
 - VS of volumes less than 288 mm3 (800 voxels ; 19 images in total) were augmented with TBA by using λ of 0.6, 0.8 and 
1.2 (to increase the proportion of weakly appearing tumors).
 - all cochlea were augmented with TBA using λ of 2, 3 and 4.

SinGAN training : default parameters except kersize=5 and scale_factor=0.85 (17 scales in total)
Augmentation is performed twice per lambda value with scale 15 and 13.

Images are resampled to 0.4x0.4x1 spacing before last segmentation model to reJne masks.
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Challenge evaluation
Metrics:

• Dice Score Coefficient (DSC)
• Average Symmetric Surface Distance (ASSD)

Ranking method: 
• Based on BraTS challenge methodology
• Participating teams are ranked for each testing subjects, for each evaluated region (i.e., VS and cochlea), and 

for each measure (i.e., DSC and ASSD)
• The final ranking score for each team is then calculated by firstly averaging across all these individual rankings 

for each patient, and then averaging these cumulative ranks across all patients for each participating team

Validation set submission process: 
• Predictions submitted via grand-challenge.org 
• 1 submission allowed per day

Testing set submission process:
• 1 submission via a Docker container
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Participation

Registration:
Number teams: 233
Number countries: 35

Validation:
Number teams: 27
Number countries: 15

Testing:
Number teams: 12
Number countries: 8
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High level observations - validation
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2021 2022



1st – ne2e - ranking score: 3.0
Hexin Dong, Fei Yu, Mingze Yuan, Jie Zhao, Bin Dong, Li 

Zhang,  Luyi Han, Yunzhi Huang, Tao Tan, Ritse
MannHwang 

(Peking University, Beijing, China)
Prize: NVIDIA RTX 3090

Results
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3rd - LaTIM - ranking score: 3.8
Guillaume Sallé, Pierre-Henri Conze, Julien Bert, 

Nicolas Boussion, Ulrike Schick, Dimitris Visvikis, 
Vincent Jaouen
(LaTIM, Inserm)

2nd – MAI - ranking score: 3.4
Bogyeong Kang, Hyeonyeong Nam), Ji-Wung, Keun-Soo 

Heo, Tae-Eui Kam
(Korea University)



Overall segmentation performance
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Vestibular Schwannoma Cochleas
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• ne2e (winner): median DSC greater than 86% for both structures
• Top 5: median DSC greater than 84% for both structures



Evaluation per structure
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Vestibular Schwannoma Cochleas
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• More variability can be observed in terms of algorithm performance for the tumour than for the cochleas
• Top 10 teams: IQRs for the DSC and ASSD are respectively 2.6 and 16 times larger for VS than cochleas
• More outliers for VS than for cochleas

à proposed algorithms are less robust on VS than on cochleas
cochleas are more uniform in terms of location, volume size and intensity distribution than tumours



Evaluation per center

77

Vestibular Schwannoma Cochleas
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• Similar rankings for each center on cochlea
• Large changes in ranking for each center on VS
• Similar scores on cochlea (median Dice top 5 - London: 85.10%; Tilburg: 85.80%)
• Segmenting VS on Tilburg data is harder   (median Dice top 5 – London: 88.10%; Tilburg: 85.4%) 

London                                    Tilburg London                                    Tilburg



Ranking stability
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Bootstrapping (1,000 bootstrap samples) to investigate the ranking uncertainty and stability of the 
proposed ranking scheme with respect to sampling variability

The ranking stability of the proposed scheme is excellent



Comparison with full supervision
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Team Ranking Vestibular Schwannoma Cochlea

DSC (%) ASSD (mm) DSC (%) ASSD (mm)

ne2e 1 86.1 [82.7 - 89.7] 0.38 [0.28 - 0.61] 87.6 [86.3 - 88.7] 0.15 [0.12 - 0.17]

MAI 2 87.3 [82.5 - 90.5] 0.41 [0.32 - 0.53] 86.2 [84.8 - 87.3] 0.17 [0.12 - 0.20]

LaTIM 3 86.8 [83.1- 90.5] 0.42 [0.29 – 0.43] 84.9 [83.2 - 86.8] 0.17 [0.14 - 0.21]

Super 
Polymerization 4 86.6 [82.3 – 90.0] 0.43 [0.33 – 0.57] 84.9 [83.6 - 86.2] 0.18 [0.14 - 0.22]

A*DA 5 86.7 [81.3 – 90.9] 0.43 [0.31 – 0.59] 84.6 [82.6 - 85.5] 0.20 [0.18 - 0.23]

Full supervision 
(nnUnet) 92.5 [89.2 - 94.2] 0.20 [0.14 - 0.29] 87.7 [85.8 - 89.3] 0.10 [0.09 - 0.13]
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Problem almost solved



Challenge limitations
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Segmentation performance depends on various parameters:
§ Pre-processing step (cropping, image resampling, image normalization)
§ Training strategy 
§ Segmentation network
§ CycleGAN approach

à Difficult to explain the different levels of performance reached by similar approaches 

Domain gap between the source and target images is large, as it corresponds to different modalities
The intra-domain data was homogeneous:

à Lack of robustness may occur when the same modalities are acquired with different settings
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Team Members: Luyi Han, Yunzhi Huang, Tao Tan    , Ritse Mann
NKI & RUMC

Unsupervised Cross-Modality Domain Adaptation for Vestibular 

Schwannoma Segmentation and Koos Grade Prediction based on 

Semi-Supervised Contrastive Learning

17-09-2022



2

Part 1 Background
Task 1
• The goal of the segmentation task (Task 1) is to segment two key brain structures (tumor and cochlea) involved 

in the follow-up and treatment planning of vestibular schwannoma (VS).

Task 2
• The goal of the classification task (Task 2) is to automatically classify hrT2 images with VS according to the 

Koos grade.

Cross-Modality Domain Adaptation Challenge 2022, https://crossmoda2022.grand-challenge.org/
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Part 1 Contributions

• We propose an unsupervised domain adaptation framework to learn the shared representation from 
both ceT1 and hrT2 images and recover another modality from the latent representation.

• We introduce proxy tasks of VS and GIF segmentation to restrict the consistency of image structures 
in domain adaptation.

• We employ a semi-supervised contrastive learning pre-train approach to improve the model 
performance for Koos grade prediction.

Our code is available at https://github.com/fiy2W/cmda2022.superpolymerization
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Part 2 Framework Overview

Overview of the proposed unsupervised domain adaptation segmentation and classification framework.

Our code is available at https://github.com/fiy2W/cmda2022.superpolymerization
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Part 2 VS Segmentation based on Unsupervised Domain Adaptation

The architecture of MSF-Net. The reverse transform direction (from real hrT2 to fake ceT1) is omitted for ease of

illustration. Not that, both directions share weights for the model, and no proxy paths (!!" and !#$%) are involved in the
reverse direction due to lack of annotations.

Our code is available at https://github.com/fiy2W/cmda2022.superpolymerization
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Part 2 VS Segmentation based on Unsupervised Domain Adaptation

ℒ!"# = #! $ %$% − %$ $ + %&% − %& $ + #' $ ℒ' %$% , %$ + ℒ' %&% , %&

ℒ#(# = %$→&→$%% − %$ $ + %&→$→&%% − %& $

min
*!" ,*!#

max
,
ℒ-./ = .0$ %$ − 1 & + .0$ %&→$% & + .0& %& − 1 & + .0& %$→&% &

ℒ1"2 = ℒ#" 0/1% , 0/1 + ℒ.1# 0/1% , 0/1 + ℒ#" 0234% , 0234 + ℒ.1# 0234% , 0234

Reconstruction loss

Cycle consistency loss

Adversarial loss

Segmentation loss

Our code is available at https://github.com/fiy2W/cmda2022.superpolymerization
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Part 2 Koos Prediction based on Semi-Supervised Contrastive Learning

The architecture of MSF-Koos-Net.

Our code is available at https://github.com/fiy2W/cmda2022.superpolymerization
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Part 2 Koos Prediction based on Semi-Supervised Contrastive Learning

ℒ1"54 = −1
3∈7

log
exp 7$3 $ ⁄7&3 9

∑8∈7 exp 7$3 $ ⁄7&8 9
$

exp 7$3 $ ⁄7&3 9
∑8∈7 exp 7$8 $ ⁄7&3 9

ℒ19' = −1
3∈:

1
; < 1

'∈; 3
log

exp =$3 $ ⁄=&' 9
∑8∈: exp =$3 $ ⁄=&8 9

$
exp =$' $ ⁄=&3 9

∑8∈: exp =$8 $ ⁄=&3 9

Self-supervised contrastive learning

Supervised contrastive learning

Our code is available at https://github.com/fiy2W/cmda2022.superpolymerization
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Part 3 Data Preparing

Our code is available at https://github.com/fiy2W/cmda2022.superpolymerization

Original ceT1

Original hrT2

Resampling
Histogram Matching

Resampling
Histogram Matching

Affine

Affine

ceT1 Patch

Affined ceT1 Patch

hrT2 Patch

Affined hrT2 Patch
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Part 3 Experimental Results

Our code is available at https://github.com/fiy2W/cmda2022.superpolymerization

Methods VS Dice VS ASSD Cochlea Dice Cochlea ASSD

CycleGAN 0.7402±0.2504 1.7556±5.3276 0.8202±0.0253 0.2325±0.1545

MSF-Net w/o VS&GIF 0.7764±0.2025 0.6905±0.6437 0.8220±0.0510 0.3097±0.2986

MSF-Net w/o GIF 0.8288±0.0838 0.7901±1.0765 0.8285±0.0354 0.2507±0.1828

MSF-Net 0.8493±0.0683 0.5202±0.2288 0.8294±0.0268 0.2454±0.2102

Segmentation results for nnU-Net utilizing generated hrT2 images with different domain adaptation methods.

Semi-supervised contrastive learning Freeze pre-trained weights MAMSE 

0.8371

√ 0.6805

√ √ 0.3940

Koos grade prediction results for ablation study of the proposed MSF-Koos-Net.



Thanks for Your Attention!

17-09-2022

Team Members: Luyi Han, Yunzhi Huang, Tao Tan    , Ritse Mann
NKI & RUMC
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Challenge evaluation
Metrics:

• Macro-Averaged Mean Absolute Error
• Takes class imbalance into account
• Depends on the difference between true and predicted label

Validation set submission process: 
• Predictions submitted via grand-challenge.org
• 1 submission allowed per day

Testing set submission process:
• 1 submission via a Docker container
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1st – SJTU_EIEE_2-426Lab_class – MA-MAE: 0.26 
Tao Yang, Lisheng Wang

Shanghai Jiao Tong University, China

Results
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3rd – skjp - MA-MAE: 0.84
Satoshi Kondo, Satoshi Kondo

Muroran Institute of Technology, Japan

2nd –Super Polymerization – MA-MAE 0.37
Luyi Han, Yunzhi Huang, Tao Tan, Ritse Mann

Radboud University, the Netherlands



Results
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Organizing team & sponsors


