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Abstract. Domain adaptation has been widely adopted to transfer styles
across multi-vendors and multi-centers, as well as to complement the
missing modalities. In this challenge, we proposed an unsupervised do-
main adaptation framework for cross-modality vestibular schwannoma
(VS) and cochlea segmentation and Koos grade prediction. We learn the
shared representation from both ceT1 and hrT2 images and recover an-
other modality from the latent representation, and we also utilize proxy
tasks of VS segmentation and brain parcellation to restrict the consis-
tency of image structures in domain adaptation. After generating missing
modalities, the nnU-Net model is utilized for VS and cochlea segmenta-
tion, while a semi-supervised contrastive learning pre-train approach is
employed to improve the model performance for Koos grade prediction.
On CrossMoDA validation phase Leaderboard, our method received rank
4 in task1 with a mean Dice score of 0.8394 and rank 2 in task2 with
Macro-Average Mean Square Error of 0.3941. Our code is available at
https://github.com/fiy2W/cmda2022.superpolymerization.

Keywords: Domain Adaptation · Semi-supervised Contrastive Learn-
ing · Segmentation · Vestibular Schwannoma.

1 Introduction

Domain adaptation has recently been employed in various clinical settings to im-
prove the applicability of deep learning approaches. The goal of Cross-Modality
Domain Adaptation (CrossMoDA) challenge 4 is to segment two key brain struc-
tures, namely vestibular schwannoma (VS) and cochlea. It also requires predict-
⋆ Luyi Han and Yunzhi Huang contributed equally to this work.
4 https://crossmoda2022.grand-challenge.org/
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ing the Koos grading scale for VS. The two tasks are required for the mea-
surement of VS growth and evaluation of the treatment plan (surveillance, ra-
diosurgery, open surgery). And an automatic pipeline for VS segmentation and
Koos classification on MRIs has been proposed to improve clinical workflow [13].
Although contrast-enhanced T1 (ceT1) MR imaging is commonly used for pa-
tients with VS in diagnosis and surveillance, the research on non-contrast imag-
ing, such as high-resolution T2 (hrT2), is growing due to lower risk and more
efficient cost. Therefore, to avoid additional annotation, CrossMoDA aims to
transfer the learnt knowledge from ceT1 to hrT2 images by building up domain
adaptation between unpaired ceT1 and hrT2.

2 Related Work

Weakly supervised and unsupervised domain adaptation for VS and cochlea
segmentation has been extensively validated in previous research [7, 8]. Most
of them employ an image-to-image translation method, e.g. CycleGAN [19], to
generate pseudo-target domain images from source domain images. And then
generated images and the corresponding manual annotations are used to train
the segmentation models. Dong et al. [6] utilize NiceGAN [3], which is trained
by reusing discriminators for encoding, to improve the performance of domain
adaptation and further segmentation. Choi [5] proposes a data augmentation
method by halving the intensity in the tumor area for generated hrT2. Shin et
al. [15] employ an iterable self-training strategy in their method: (1) train the
student model with annotated generated hrT2 and pseudo-labeled real hrT2;
(2) make the student a new teacher and update the pseudo label for real htT2.
Following these works, our proposed method focuses more on extracting joint
representations from multi-modality MRIs, which can reduce the distance be-
tween different modalities in the latent space.

Classification task for medical images can be very challenging due to insuf-
ficient instances. In recent years, contrastive learning has led to state-of-the-art
performance in self-supervised representation learning [17, 1, 9, 12]. In contrastive
learning, a data sample is first selected as the anchor, and samples with the same
class as the anchor are positive samples, while others are negative samples. The
key idea is to reduce the distance between an anchor and a positive sample in la-
tent space, and distinguish the anchor from other negative samples. Contrastive
learning is often applied to medical image pretraining. Huang et al. [10] develop
an attentional contrastive learning framework for global and local representation
learning between images and radiology reports. You et al. [18] introduce lesion
and normal contrastive losses to the multi-task approach to learn inter- and
intra-variations, which improves the performance of cancer detection. Apart from
contrastive learning on pixel-level features, Wang et al. [16] propose graph-level
contrastive learning to handle population-based fMRI classification. Inspired by
these works, contrastive learning is employed at the pretraining phase to mine
multi-modality representation strategically for different types of samples.
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Fig. 1. Overview of the proposed unsupervised domain adaptation segmentation and
classification framework.

3 Method

3.1 Framework Overview

Figure 1 illustrates the proposed unsupervised domain adaptation segmentation
and classification framework. We first employ a multi-sequence fusion network
(MSF-Net) to generate the corresponding hrT2 image from a given ceT1 image.
To train a robust segmentation network, we pool real ceT1 images and generated
hrT2 images together, instead of pairing them, to ensure the nnU-Net [11] model
is able to predict ceT1 and hrT2 images blindly. By leveraging the predicted
segmentation mask and pre-trained MSF-Net, we propose MSF-Koos-Net based
on semi-supervised contrastive learning to predict Koos grade.

3.2 Cochlea and VS segmentation based on unsupervised domain
adaptation

Figure 2 illustrates the architecture of the proposed MSF-Net. Although ceT1
and hrT2 MRI images differ in image resolution and appearance, organs’ repre-
sentations from an identical subject are commonly embedded in the latent space.
Based on this, we employed a share-weighted encoder E to extract the domain-
free representations from both ceT1 and hrT2 images. Then, two decoders (GT1

and GT2) was constructed to recover the different parametric MRI sequences
from the latent representations. The reconstruction loss is as follows,

Lrec = λr · (∥I ′1 − I1∥1 + ∥I ′2 − I2∥1) + λp · (Lp(I
′
1, I1) + Lp(I

′
2, I2)) (1)

where I ′1 = GT1(E(I1)), I ′2 = GT2(E(I2)), ∥ · ∥1 is a L1 loss, and Lp refers to
the perceptual loss based on pre-trained VGG19. λr and λp are weight terms
and are set to be 10 and 0.01.

Inspired by Cycle-GAN [19], we utilize the adversarial loss to achieve the
domain adaptation and employ cycle consistency loss to force the consistency of
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Fig. 2. The architecture of MSF-Net. The reverse transform direction (from real hrT2
to fake ceT1) is omitted for ease of illustration. Note that, both directions share weights
for the model, and no proxy paths (Gvs and Ggif ) are involved in the reverse direction
due to lack of annotations.

the anatomical structures.

min
DT1,DT2

max
G

Ladv = ∥DT1(I1)− 1∥2 + ∥DT1(I
′
2→1)∥2

+ ∥DT2(I2)− 1∥2 + ∥DT2(I
′
1→2)∥2

(2)

Lcyc = ∥I ′′1→2→1 − I1∥1 + ∥I ′′2→1→2 − I2∥1 (3)

where I ′1→2 = GT2(E(I1)), I ′′1→2→1 = GT1(E(I ′1→2)), I ′2→1 and I ′2→1→2 are
formulated similarly, ∥ · ∥2 is a L2 loss.

To further restrict the image structure during domain adaptation, especially
for tumors, we employ two proxy tasks for real ceT1 images, including VS seg-
mentation (Gvs) and brain parcellation (Ggif ) whose labels are obtained with
the Geodesic Information Flows (GIF) algorithm [2].

Lseg = Lce(M
′
vs,Mvs) + Ldsc(M

′
vs,Mvs)

+ Lce(M
′
gif ,Mgif ) + Ldsc(M

′
gif ,Mgif )

(4)

where Lce refers to the cross entropy loss and Ldsc indicates the dice similarity
coefficient loss.

The total loss function of the proposed MSF-Net can be summarized as,

Ltotal = Lrec + λa · Ladv + λc · Lcyc + λs · Lseg (5)

where we set λa = 1, λc = 10, and λs=1 with experimental experience.
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3.3 Koos grade prediction based on semi-supervised contrastive
learning

Figure 3 illustrates the architecture of MSF-Koos-Net. The frozen pre-trained
encoder E from MSF-Net is employed to extract low-level features from both
ceT1 and hrT2 images. To pay more attention to the tumor region, we con-
catenate the low-level image features with the predicted segmentation mask of
the tumor. Then followed with a high-level encoder EH to extract high- dimen-
sion features and a fully connected layer to output the predicted Koos grade.
To achieve better performance of Koos grade prediction with limited data, both
supervised and self-supervised contrastive learning [12] are utilized to pre-train
the MSF-Koos-Net.

Fig. 3. The architecture of MSF-Koos-Net.

Self-supervised contrastive learning. After generating the missing modal-
ity, a dataset that includes paired ceT1 and hrT2 is composed. Within a multi-
modality batch, let D be the group of indexes for these samples. For self-
supervised contrastive learning, only cross-modality samples with the same in-
dexes as the source sample are positive. The loss function is defined as follows,

Lself = −
∑
i∈D

log
exp (z

(i)
1 · z(i)2 /τ)∑

j∈D exp (z
(i)
1 · z(j)2 /τ)

· exp (z
(i)
1 · z(i)2 /τ)∑

j∈D exp (z
(j)
1 · z(i)2 /τ)

(6)

where z1 = Fself (EH(E(I1)) and z2 = Fself (EH(E(I2)) refer to features ex-
tracted from ceT1 and hrT2 images, Fself indicates the projection network [4]
for self-supervised contrastive learning, the · symbol denotes Scalar Product, τ
refers to the scalar temperature parameter.
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Supervised contrastive learning. To leverage Koos grade for pretraining,
supervised contrastive learning is employed to enlarge the inter-grade difference
and intra-grade similarity. We use samples from real ceT1 and the corresponding
fake hrT2 pairs, and let A be the index group for the annotated samples in a
multi-modality batch. The loss takes the following form,

Lsup = −
∑
i∈A

1

|P(i)|
∑

p∈P(i)

log
exp (q

(i)
1 · q(p)2 /τ)∑

j∈A exp (q
(i)
1 · q(j)2 /τ)

· exp (q
(p)
1 · q(i)2 /τ)∑

j∈A exp (q
(j)
1 · q(i)2 /τ)

(7)

where q1 = Fsup(EH(E(I1)) and q2 = Fsup(EH(E(I2)) refer to features ex-
tracted from ceT1 and hrT2 images, Fsup indicates the projection network [4]
for supervised contrastive learning, P(i) = {p ∈ A|yp = yi} is the index group
for positive samples whose Koos grades are the same as the source sample I(i),
|P(i)| refers to the number of samples in P(i).

Koos grade prediction. By freezing the pre-trained E and EH, we only fine-
tune the final fully connected layer with annotated real ceT1 and the correspond-
ing generated hrT2 images. In this phase, the MSF-Koos-Net is trained with a
cross-entropy loss.

Fig. 4. The pipeline of image preprocessing. Both ceT1 and hrT2 images are resampled
and applied with histogram matching respectively. And then the images are registered
to the same atlas by affine transformation. Finally, patches with the fixed region of
interest are extracted from affined and non-affined images.
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4 Experimental Results

4.1 Materials and Implementation Details

Dataset. The dataset for the CrossMoDA challenge is an extension of the pub-
licly available Vestibular-Schwannoma-SEG collection released on The Cancer
Imaging Archive (TCIA) [14, 8], which is divided into the training dataset (210
subjects with ceT1 images and other unpaired 210 subjects with hrT2 images)
and the validation dataset (64 subjects with hrT2 images). All imaging datasets
were manually segmented for cochlea and VS, and automated GIF parcellation
masks were provided for the training source dataset.

Data preprocessing. Figure 4 illustrates the pipeline of image preprocessing.
All the images are first resampled to the spacing of 1×0.4102×0.4102 mm. Then
we utilize histogram matching to normalize ceT1 and hrT2 images, separately.
To improve the performance of domain adaptation, we select an identical hrT2
image as the atlas and employ intra- and inter-modality affine transformation on
all the ceT1 and hrT2 images, respectively. Here, we utilize mutual information
(MI) loss for ceT1 images and normalized cross-correlation (NCC) loss for hrT2
images. Finally, based on the distribution of tumor areas in the training set, we
crop the images to the size of 80×256×256 by setting a fixed region. Limited by
the device, we train the model in 2.5D mode – adjacent three slices are treated
as a three-channel 2D input.

Implementation Details. We implemented our method using Pytorch with
NVIDIA 3090 RTX. We optimized MSF-Net and MSF-Koos-Net with ADAM.
MSF-Net is trained with a learning rate of 2× 10−4, a default of 1,000 epochs,
and a batch size of 1. nnU-Net is trained with its default settings. MSF-Koos-Net
is first pre-trained based on semi-supervised contrastive learning with a learning
rate of 1 × 10−2, a default of 100 epochs, and a batch size of 4. And then we
fine-tune MSF-Koos-Net with a learning rate of 1 × 10−4 and a default of 20
epochs.

4.2 Results

Cross-modality domain adaptation results between ceT1 and hrT2 are shown in
Fig. 5. Real ceT1 images are correctly transferred to the hrT2 domain keeping
the tumor structure unchanged. To evaluate the influence of different generation
performances for further segmentation, we compare our proposed method with
CycleGAN [19] on ceT1 and hrT2 domain adaptation. And all the comparisons
are based on the same segmentation process. Table 1 shows the segmentation
results for the nnU-Net models training with fake hrT2 images generated by dif-
ferent methods. The proposed MSF-Net achieve better segmentation results than
CycleGAN on the validation set, and the ablation study shows that adding the
proxy task of VS and GIF can improve the performance of cross-modality domain
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Real ceT1

Gen hrT2

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Fig. 5. Examples of real ceT1 images and corresponding generated hrT2 images from
the proposed MSF-Net.

adaptation. For Koos grade prediction, the proposed MSF-Koos-Net achieves the
best Macro-Average Mean Square Error (MAMSE) of 0.3940. MAMSE increases
to 0.6805 when the pre-trained weights are not frozen. And further MAMSE in-
creases to 0.8371 without pretraining with semi-supervised contrastive learning.

Table 1. Segmentation results for nnU-Net utilizing generated hrT2 images with dif-
ferent domain adaptation methods.

Methods VS Dice ↑ VS ASSD ↓ Cochlea Dice ↑ Cochlea ASSD ↓
CycleGAN 0.7402±0.2504 1.7556±5.3276 0.8202±0.0253 0.2325±0.1545
MSF-Net w/o VS&GIF 0.7764±0.2025 0.6905±0.6437 0.8220±0.0510 0.3097±0.2986
MSF-Net w/o GIF 0.8288±0.0838 0.7901±1.0765 0.8285±0.0354 0.2507±0.1828
MSF-Net 0.8493±0.0683 0.5202±0.2288 0.8294±0.0268 0.2454±0.2102

5 Discussion

In this study, we develop a cross-modality domain adaptation approach for VS
and cochlea segmentation and also Koos grade prediction. In practice, our pro-
posed MSF-Net is verified to convert the images from the ceT1 domain to the
hrT2 domain and keep the anatomy unchanged. With a weight-shared encoder,
MSF-Net is capable of learning joint multi-modality representation, given the
ability of modality identification. The constraints on self-supervised modality
recovery provide more structure consistency for the model training. Based on
this, the proposed MSF-Net achieves better performance on domain adaptation
than CycleGAN. This further affects the follow-up segmentation task, making
the segmentation results of MSF-Net higher than that of CycleGAN. In addition,
proxy tasks also have an important contribution to cross-modality domain adap-
tation. Segmentation of VS and brain structure can help less structural bias dur-
ing image-to-image transformation and improve the segmentation accuracy. Our
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proposed MSF-Koos-Net also achieves high accuracy in the cross-modality clas-
sification task. Self-supervised medical image pretraining by contrastive learning
has been proven to lead to Koos grade prediction performance improvements.
It is shown that freezing the pre-trained weights during finetuning stage of the
model is effective for limited training data. It may be because fine-tuning the
last layer requires fewer parameters to be optimized. Weight-frozen strategy and
contrastive learning are helpful in avoiding overfitting and capturing more rep-
resentative information from images.
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