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Abstract. In this work, we propose a multi-view image translation
framework, which can translate contrast-enhanced T1 (ceT1) MR imag-
ing to high-resolution T2 (hrT2) MR imaging for unsupervised vestibular
schwannoma and cochlea segmentation. We adopt two image transla-
tion models in parallel that use a pixel-level consistent constraint and a
patch-level contrastive constraint, respectively. Thereby, we can augment
pseudo-hrT2 images reflecting different perspectives, which eventually
lead to a high-performing segmentation model. Our experimental results
on the CrossMoDA challenge show that the proposed method achieved
enhanced performance on the vestibular schwannoma and cochlea seg-
mentation..
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1 Introduction

Vestibular schwannoma (VS) is a benign tumor that occurs in the nerve mem-
brane cells of the vestibular nerve [6, 11]. For diagnosis and treatment of VS,
it is necessary to segment the VS and its surrounding organs, especially the
cochleas [6, 11]. In general, VS is diagnosed through contrast-enhanced T1 (ceT1)
MR imaging but there are concerns about side effects such as allergy to gadolinium-
containing contrast agents [6, 11]. As an alternative, high-resolution T2 (hrT2)
MR imaging, a non-contrast imaging technique, has shed light on VS segmen-
tation [6, 11]. However, it is very time-consuming and expensive to manually
annotate newly released data. For this reason, the lack of annotated data can be
a big problem for applying deep learning techniques in the medical domain. This
issue can be solved by applying unsupervised domain adaptation, which allows
a model trained in one domain to be adapted in another unseen domain with-
out supervision [1, 5, 8]. Recently, some studies [12, 4, 3] have been conducted
based on cross-modality domain adaptation for VS and cochlea segmentation in
unseen hrT2 scans. Previous studies [12, 4, 3] achieved outstanding performance
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on VS and cochlea segmentation utilizing image translation models such as Cy-
cleGAN [14] or CUT [10]. Of note, CycleGAN employs pixel-level consistent
constraints, while CUT adopts patch-level contrastive constraints. The former
constraint can better reflect the intensity and the texture of VS through cycle-
consistency loss, but the structure of VS and cochleas could be distorted. Besides,
the latter constraint uses contrastive loss, having an advantage in preserving the
structure of VS and cochleas, but could ignore the detailed characteristics such
as intensity and texture. Based on these considerations, we believe that we can
obtain diverse pseudo-hrT2 images, which can help to improve the segmentation
model performance by using the two aforementioned constraint models together.

Therefore, we design a multi-view image translation framework to obtain the
pseudo-hrT2 images with different perspectives by adopting two image transla-
tion models in parallel, CycleGAN [14] and QS-Attn [7]. CycleGAN employs a
pixel-level consistent constraint, and QS-Attn is an advanced patch-level con-
trastive constraint method that focuses on domain-relevant features [7]. To our
best knowledge, QS-Attn [7] is first adopted for image translation from ceT1 to
hrT2 images in this work. Based on our multi-view image translation framework,
the following segmentation model can learn both structure and texture of VS
and cochleas.

2 Related Work

Cross-modality unsupervised domain adaptation has drawn a lot of attention in
the CrossMoDA challenge [6]. The goal of this challenge is to construct a VS and
cochlea segmentation model on hrT2 images with unpaired annotated ceT1 and
non-annotated hrT2 scans. Recent studies [12, 4, 3] first translated the source
ceT1 images to the target hrT2 images, and then trained their segmentation
models with the translated hrT2 (i.e., pseudo-hrT2) images. More specifically,
Shin et al. [12] translated the ceT1 images to the hrT2 images by adding an
additional decoder to CycleGAN to preserve the structures of VS and cochleas.
Dong et al. [4] conducted image translation using NiceGAN [2], which is based on
CycleGAN [14], and Choi et al. [3] obtained pseudo-hrT2 images using CUT [10].
Of note, they all obtained pseudo-hrT2 images by taking only one constraint
model. Besides, Choi et al. [3] performed post-processing to obtain the images
with low intensity, similar to the VS in real hrT2 scans.

3 Proposed Method

3.1 Overview

Fig. 1 shows an overview of our proposed framework, which consists of three
parts; (1) multi-view image translation, (2) segmentation model training, and (3)
self-training. Specifically, we first generate the pseudo-hrT2 images with various
characteristics through multi-view image translation. After that, we train the
segmentation model using the multi-view pseudo-hrT2 images and the labels
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Fig. 1. The overview of our proposed framework.

of the ceT1 images. In the self-training, the trained segmentation model first
performs pseudo-labeling of real hrT2 images, and then is further trained by
including the pseudo-labeled real hrT2 images in the next training phase.

3.2 Multi-view image translation

We first translate ceT1 images into multi-view pseudo-hrT2 images by adopting
CycleGAN [14] and QS-Attn [7] in parallel.

CycleGAN. CycleGAN uses cycle-consistency loss to translate the source do-
main ceT1 images into the target domain hrT2 images. Cycle-consistency loss
described in Eq. 1 encourages F (G(xs)) to be equal to xs and G(F (xt)) to be
equal to xt in pixel-level when given the G : Xs → Xt and F : Xt → Xs

generators [14].

Lcycle = ∥F (G(xs))− xs∥+ ∥G(F (xt))− xt∥ (1)

QS-Attn. QS-Attn is an unpaired image translation model that is improved
from CUT [10]. CUT preserves the structural information by constraining the
patches from the same location on the source and the translated images to be
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close, compared to the different locations. CUT maximizes the mutual informa-
tion between the source and translated images through the Eq. 2 [10],

Lcon = − log

[
exp(q · k+/τ)

exp(q · k+/τ) +
∑N−1

i=1 exp(q · k−/τ)

]
(2)

where q is the anchor feature from the translated image and k+ is a single positive
at the same location in the source image and k− are (N − 1) negatives at the
other locations, and τ is a temperature [7].

However, CUT [10] calculates the contrastive loss between the randomly
selected patches, which could have less domain-relevant information. QS-Attn
addresses this limitation by adopting the QS-Attn module, which can select
domain-relevant patches. The QS-Attn module constructs the attention matrix
Ag using the features in the source images and then obtains the entropy Hg by
following Eq. 3 [7].

Hg(i) = −
HW∑
j=1

Ag(i, j) logAg(i, j) (3)

Of note, the smaller entropy Hg means the more important feature. Thus, Ag

is sorted in ascending order according to entropy Hg to select domain-relevant
patches [7]. By calculating the contrastive loss using the selected domain-relevant
patches, the structures of the source domain better preserve, and more realistic
images are generated compared to CUT [10].

We empirically found that CycleGAN with pixel-level cycle-consistency loss
allows the model to better reflect the intensity and the texture of the VS and
cochleas in the target images, while QS-Attn takes advantage of preserving the
structure of them more clearly via patch-level contrastive loss (refer to Section 5
for more details). By using them together, our multi-view image translation
can augment pseudo-hrT2 images from different perspectives, and it can help
improve the performance of the following segmentation model.

3.3 Segmentation and Self-training

Motivated by the previous works [12, 4, 3], we also utilize nnUNet [9] and self-
training procedure [13] to construct the segmentation model. nnUNet is a power-
ful segmentation framework that automatically performs pre-processing, train-
ing, and post-processing with heuristic rules [9]. Self-training is carried out to
reduce the distribution gap between real hrT2 and translated hrT2 images and
to improve the robustness of the segmentation model for unseen real hrT2 scans.
The segmentation and self-training procedure consists of four steps; (1) train-
ing the segmentation model using the translated hrT2 scans with labels of the
ceT1 scans. (2) Generating pseudo labels of unlabeled real hrT2 scans by using
the trained segmentation model. (3) Retraining the segmentation model using
both the translated hrT2 scans with labels of the ceT1 scans and the real hrT2

scans with pseudo labels. 4) Repeating Steps 2-3 to achieve further performance
improvement.
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4 Experiments and Results

4.1 Dataset and preprocessing

We used the CrossMoDA dataset 1 [6] for training, validation. The CrossMoDA
dataset consists of data from two different institutions: London and Tilburg. The
London data consists of 105 ceT1 scans and 105 hrT2 scans. The ceT1 scans were
acquired with the in-plane resolution of 0.4×0.4mm, in-plane matrix of 512×512,
and slice thickness of 1.0 to 1.5 mm with an MPRAGE sequence (TR=1900 ms,
TE=2.97 ms, TI=1100 ms). Meanwhile, hrT2 scans were acquired with the in-
plane resolution of 0.5×0.5mm, in-plane matrix of 384×384 or 448×448, and
slice thickness of 1.0 to 1.5 mm with a 3D CISS or FIESTA sequence (TR=9.4
ms, TE=4.23ms). For the Tilburg data set, ceT1 scans and hrT2 scans consist
of 105 subjects each. The ceT1 scans were acquired with the in-plane resolution
of 0.8×0.8mm, in-plane matrix of 256×256, and slice thickness of 1.5 mm with
a 3D-FFE sequence (TR=25 ms, TE=1.82 ms). The hrT2 scans were acquired
with the in-plane resolution of 0.4×0.4mm, in-plane matrix of 512×512, and
slice thickness of 1.0 mm with a 3D-TSE sequence (TR=2700 ms, TE=160 ms,
ETL=50) [6]. The training dataset of the CrossMoDA2022 Challenge 1 contains
a total of 210 ceT1 scans with annotation labels and 210 hrT2 scans without an-
notation labels. In addition, they provide 64 scans of hrT2 images for validation.

Since the voxel spaces vary across scans, all the images were resampled to
[0.41, 0.41, 1.5] voxel sizes. For image translation, the 3D MRI images were
sliced into a series of 2D images along the axial plane and the images were
center-cropped and resized to 256 × 256. After performing image translation,
the translated hrT2 images were merged into 3D MR imaging and fed into the
segmentation model.

4.2 Implementation details

We implement CycleGAN [14], QS-Attn [7], and nnUNet [9], following their
default parameter settings. We also apply a global attention in QS-Attn [7], and
ensemble selection in nnUNet [9] for the final prediction. All the implementations
are powered by RTX 3090 24GB GPUs. The training of CycleGAN, QS-Attn,
and nnUNet is performed with PyTorch 1.8.0, 1.7.1, and 1.10.2, respectively.

4.3 Results

Table 1 and Fig. 2 show the VS and cochlea segmentation results with different
image translation methods. The proposed multi-view image translation frame-
work with CycleGAN [14] and QS-Attn [7] shows better performance compared
to other methods using each model alone. Moreover, we greatly improved the per-
formance of the segmentation model with self-training. As a result, our proposed
method obtained a great achievement with a mean dice score of 0.8504±0.0466
in the validation period.

1 https://crossmoda-challenge.ml/
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Table 1. Segmentation results with dice and ASSD scores (ST: self-training).

Translation Dice score ASSD
model VS Cochlea Mean VS Cochlea

CycleGAN
(w/o. ST)

0.7798
(±0.1901)

0.8066
(±0.0323)

0.7932
(±0.0972)

0.8750
(±0.9222)

0.2422
(±0.1608)

QS-Attn
(w/o. ST)

0.7779
(±0.1825)

0.8158
(±0.0287)

0.7968
(±0.0929)

0.6667
(±0.3891)

0.2365
(±0.1573)

Proposed
(w/o. ST)

0.8043
(±0.1656)

0.8158
(±0.0289)

0.8101
(±0.0863)

0.5742
(±0.2461)

0.2387
(±0.1581)

Proposed
(w. ST)

0.8520
(±0.0889)

0.8488
(±0.0235)

0.8504
(±0.0466)

0.4748
(±0.2072)

0.1992
(±0.1524)

Fig. 2. Qualitative comparison of segmentation results for validation set. We visualize
the segmentation results of VS (red) and cochlea (green) (ST: Self-training).

We conducted paired t-test among CycleGAN [14], QS-Attn [7], and our
proposed method (w/o. self-training, ST) to compare the segmentation perfor-
mance, and the results are plotted in Fig. 3. CycleGAN, QS-Attn, and our pro-
posed method (w/o. ST) show statistical significance with p < 0.05 for the dice
score of VS and mean values. In addition, our proposed method (w/o. ST) is sta-
tistically better with p < 0.0001 than CycleGAN on the dice score of cochleas.
Through this statistical comparison, we proved that our proposed framework
achieved better performance compared to other methods that use either of the
two models alone.



Multi-view Cross-Modality MR Image Translation 7

Fig. 3. Performance comparison of VS and cochlea segmentation models (ST: Self-
training).

5 Discussion

Fig. 4 shows the results of the two separate image translation models utilized
in the multi-view image translation framework. For comparison, we randomly
picked two ceT1 images (A&E), their corresponding translated hrT2 images (B-
C&F-G), and two unpaired real hrT2 images (D&H). We can see that QS-Attn
(C) well captured the structure of cochleas with less distortion or blurring com-
pared to CycleGAN (B). Meanwhile, some images translated through QS-Attn
(G) have too high intensities for VS, whereas those by CycleGAN (F) have sim-
ilar intensity and textures to VS in the real hrT2 image (H). As shown in Fig. 4,
the two constraint models have different strengths. Therefore, in the proposed
method, the segmentation model can learn both structures and textures of VS
and cochleas through our multi-view image translation framework. It allows the
segmentation model to consider various perspectives of VS and cochleas and
helps improve the performance of the segmentation model.

6 Conclusion

In this work, we design a multi-view image translation framework for VS and
cochlea segmentation. Specifically, we adopt CycleGAN and QS-Attn in parallel
to translate the given ceT1 images to pseudo-hrT2 images reflecting various
perspectives. Based on the pseudo-hrT2 images, the segmentation model can
learn both structures and textures of VS and cochleas. Our proposed method
obtained great achievement in the CrossMoDA challenge2022.
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Fig. 4. Comparison results of image translation by CycleGAN and QS-Attn.
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