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Abstract. Automatic segmentation of vestibular schwannoma (VS) and
cochlea from magnetic resonance imaging can facilitate VS treatment
planning. Unsupervised segmentation methods have shown promising re-
sults without requiring the time-consuming and laborious manual label-
ing process. In this paper, we present an approach for VS and cochlea
segmentation in an unsupervised domain adaptation setting. Specifically,
we first develop a cross-site cross-modality unpaired image translation
strategy to enrich the diversity of the synthesized data. Then, we devise
a rule-based offline augmentation technique to further minimize the do-
main gap. Lastly, we adopt a self-configuring segmentation framework
empowered by self-training to obtain the final results. On the Cross-
MoDA 2022 validation leaderboard, our method has achieved competi-
tive VS and cochlea segmentation performance with mean Dice scores of
0.8178 ± 0.0803 and 0.8433 ± 0.0293, respectively.

Keywords: Vestibular schwannoma · Cochlea · Unsupervised domain
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1 Introduction

Vestibular schwannoma (VS) is a benign tumor that stems from an overproduc-
tion of Schwann cells. It develops from the vestibular nerve which connects the
brain and the inner ear and its common symptoms include hearing loss, dizziness,
and tinnitus [19]. Magnetic resonance imaging (MRI) is crucial for diagnosis and
surveillance of VS and contrast enhanced T1 weighted (ceT1) MRI is currently
the most commonly used protocol. However, this involves gadolinium, which may
produce side effects ranging from mild to severe. As a possible noncontrast and
lower-cost alternative, high-resolution T2-weighted (hrT2) imaging has shown
promises for follow-up surveillance scans [2, 15,17].

To facilitate the clinical workflow, automatic methods to segment the VS
in ceT1 and hrT2 have recently emerged [17, 20, 24]. However, training super-
vised VS segmentation models requires manual annotation, which is expensive
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Fig. 1. Two types of domain gaps exist in CrossMoDA 2022 due to the difference in
(1) acquisition sites and (2) MRI modalities.

and time-consuming. Weakly-supervised [4] and unsupervised VS segmentation
methods [5] have thus drawn increasing interest in the community. In the Cross-
MoDA 2021 challenge [5], participants were given the task of unsupervised cross-
modality VS and cochlea segmentation, i.e., segmenting these two structures in
hrT2, but annotations were only provided in unpaired ceT1 images in the train-
ing set. In the CrossMoDA 2022 challenge, an additional set of ceT1 and hrT2
images are acquired at another MRI site. Therefore, two types of domain gaps
exist in this challenge due to the difference in (1) acquisition sites, i.e., site A vs.
site B, and (2) MRI modalities, i.e., ceT1 vs. hrT2, as shown in Figure 1. Both
domain gaps need to be addressed to achieve robust segmentation performance
in CrossMoDA 2022.

In this paper, we present our solution to the segmentation task of CrossMoDA
2022. We approach this task as an unsupervised domain adaptation (UDA) prob-
lem where we first train cross-site unpaired image translation models to generate
pseudo target domain (hrT2) images, then apply a rule-based augmentation to
the pseudo hrT2 images, and finally train nnU-Net [9] segmentation models us-
ing a self-training scheme. The results on the challenge leaderboard showed that
our method has achieved promising segmentation performances on both VS and
cochlea.

2 Related Work

2.1 Unsupervised Domain Adaptation (UDA)

The performance of machine learning models can be affected by data distri-
bution shift between the training/source dataset and test/target dataset [7].
UDA refers to the task of improving model performance on target domain data
when their label is not available. Feature alignment-based methods aim to learn
domain-invariant features across different domains. Domain Adversarial Neural
Network (DANN) [6] is a representative architecture that utilizes adversarial
learning between a feature extractor and a domain discriminator. The domain
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discriminator learns to differentiate whether the extracted features are from the
source or target domain, and the feature extractor learns domain-invariant fea-
tures such that it can fool the discriminator. Another way to align features is by
optimizing some divergence metrics [14, 21] between the source and target do-
mains. With the emergence of unpaired image-to-image translation approaches
such as CycleGAN [23] and UNIT [13], image-level alignment is also used to
tackle the UDA problem [8]. By utilizing a cycle-consistency loss between the
input and the reconstructed images, the models are trained without paired data.
Then, image-level alignment can be achieved by generating pseudo target do-
main images from the source domain images. In this work, we adopt image-level
alignment paradigm to bridge the domain gap between ceT1 and hrT2.

2.2 Self-training in UDA

Self-training strategies have shown promising results in the field of UDA by
fully utilizing the unlabeled target domain data. It has been shown to improve
the performance of the segmentation models by fine-tuning them on the target
images with pseudo labels. Zou et al. [25] propose a confidence regularized self-
training framework which encourages the smoothness of the network output and
reduces the confidence in false positives during training. Yu et al. [22] use a
portion of the pseudo labels with high probability to iteratively fine-tune the
model and achieve superior performance on a UDA dataset. This strategy is
also used by the top teams in CrossMoDA 2021 [5], further demonstrating its
effectiveness in the UDA problem.

3 Methods

3.1 Overview

In this study, we propose to tackle the UDA segmentation problem by following
the popular “synthesis-then-segmentation” training strategy [1,3,12,18]. Specif-
ically, we perform unpaired image translation to synthesize the pseudo target
domain images in a cross-site and cross-modality fashion. Then we devise a
rule-based offline augmentation method to further increase the data variabil-
ity. Lastly, we adopt the nnU-Net framework and perform self-training to train
a target-domain segmentation model with both the synthetic and real target
domain data.

3.2 Cross-site Cross-modality Unpaired Image Translation

Since our task is to segment the VS and cochlea in hrT2 images while their
labels are only available in the unpaired ceT1 images, we adopt an unpaired im-
age translation method, i.e., CycleGAN [23], to bridge the gap between the two
modalities and synthesize pseudo hrT2 from ceT1. Then the pseudo hrT2 im-
ages with the annotations from the corresponding ceT1 can be utilized to train
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Fig. 2. The diagram of cross-site cross-modality unpaired image translation.

segmentation models. However, MRIs (both ceT1 and hrT2) in the provided
dataset were acquired from two different sites, and we observe slight appearance
differences within each modality (especially hrT2) across sites. To enrich the
diversity of the pseudo hrT2 images, we synthesize them using ceT1 within and
across sites. Specifically, as shown in Figure 2, five CycleGAN models are trained
with different source/target domain data configurations to generate pseudo hrT2
images. We use subscripts to denote images from site A or site B, e.g., hrT2A
means hrT2 from site A. Compared to only generating within-site pseudo im-
ages, i.e., pseudo hrT2A from ceT1A (CycleGAN #1) and pseudo hrT2B from
ceT1B (CycleGAN #4), our cross-site training scheme can generate twice more
pseudo hrT2 data for the downstream task of nnU-Net segmentation. Note that
CycleGAN #5 has the same network architecture as the other four, and the only
difference is that its training set contains images from both site A and site B.

3.3 Rule-based Offline Augmentation for VS and Cochlea

Thanks to the unpaired image translation, the domain gap between ceT1 and
hrT2 can be substantially reduced at the image-level by generating pseudo hrT2
images. However, there is still a domain gap between the pseudo and real hrT2,
as we observe that the cochlea and VS in the pseudo hrT2 images do not have the
same intensity characteristics as in the real hrT2 images. To overcome this issue,
we propose to adjust the intensities of the VS and cochlea regions in pseudo hrT2
images to further minimize the domain gap, as shown in Figure 3. As suggested
by [1], for VS, we reduce the signal intensity of the voxels that are labeled as VS
by 50% to further increase the heterogeneity of VS signals [1]. This VS augmen-
tation is randomly applied to 50% of our pseudo hrT2 images. Cochleae typically
have high signal intensities in hrT2 images, with values that were empirically
found to be within the [85th, 95th] intensity percentile. However, we observe
that the generated cochlea in pseudo hrT2 images can have low intensities or
can even be absent. To improve the appearance of pseudo hrT2 images with a
mean cochlea intensity lower than the 85th intensity percentile, we replace the
original intensity of the cochlea voxels by a value randomly sampled from a uni-
form distribution, which is bounded by the 85th and 95th intensity percentile of
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Fig. 3. An illustration of the rule-based offline augmentation technique on two cases.
Orange and blue arrows represent the augmented cochlea and VS, respectively.

that image. Lastly, the augmented cochlea region is smoothed by a 3D Gaussian
kernel to further refine the cochlea appearance. The cochlea augmentation is
applied to all the pseudo hrT2 images.

3.4 Segmentation with nnU-Net and Self-training

With the augmented pseudo hrT2 images, we can train a segmentation model
supervised by the paired ceT1 labels. Here, we utilize a popular self-configuring
segmentation framework, i.e., nnU-Net, for supervised learning. However, with
this approach the real hrT2 images are not involved in training the segmentation
model due to the lack of labels. To tackle this problem, we adopt a self-training
strategy to make use of the unlabeled real hrT2 images. Specifically, we firstly
use the model trained on pseudo hrT2 images to obtain the pseudo labels of the
unlabeled real hrT2 images. Next, we re-train the nnU-Net with the combined
data, i.e., pseudo hrT2 images with real ceT1 labels and real hrT2 images with
pseudo labels. Note that we perform self-training several (in our case, 3) times,
since we observe improvements on the validation leaderboard each time the net-
work is re-trained with the updated pseudo labels produced by self-training.

4 Experiments and Results

4.1 Dataset

The dataset was released by the MICCAI challenge CrossMoDA 2022 [16]. 105
ceT1 and 105 hrT2 unpaired images were obtained on a 32-channel Siemens
Avanto 1.5T scanner, which are called “London data” or site A data. Another
105 ceT1 and 105 hrT2 unpaired images were obtained on a Philips Ingenia 1.5T
scanner, which are called “Tilburg data” or site B data. Image resolutions are
different for images from different sequences and sites. The manually segmented
mask of the VS and cochlea for the 210 ceT1 images are provided.
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4.2 Pre-processing and Network Training

We observe that the fields of view and resolutions vary substantially across
different sites and modalities. Inspired by [12], to discard the irrelevant brain
regions in our task, we first crop each MRI scan into a region of interest (ROI)
by rigid registration with an atlas. Specifically, we use 4 atlases (2 sites × 2
modalities) and we register each scan with the atlas from the same site and
modality. Moreover, to avoid losing information from high-resolution images, we
resample all the images and masks to the highest resolution of the images in the
challenge dataset, i.e., [0.4102, 0.4102, 1.0] mm.

For CycleGANs, we train the 5 models (as in Figure 2) in both 2D and 3D
settings. The patch size for 2D CycleGANs is 256 × 256 and for 3D is 112 ×
112 × 24. Random cropping or zero padding is used when the dimension of the
resampled ROI does not match the patch size during training. We use Adam
optimizer [10] with a fixed learning rate of 2e-4. The training is stopped after
100 epochs for the 2D CycleGANs and after 1000 epochs for the 3D CycleGANs.
Sliding window inference with an overlapping ratio of 0.8 is used to generate the
final synthesis results. Synthesized 2D slices are then merged into the 3D volumes
based on their original positions.

For nnU-Net training, we use the network architecture and patch size pro-
vided by the 3D fullres mode. Five-fold cross-validation is used. The Dice loss +
cross-entropy loss is used as the loss function. The SGD optimizer with an initial
learning rate of 1e-2 is used and the learning rate is decayed by a polynomial
function. We do not apply connected component analysis to post-process the seg-
mentation results, as we find that the impact of this post-processing operation
on the segmentation results varies across folds.

Overall, we use 4 training stages. In stage 1, we train the nnU-Net with
the pseudo hrT2 images generated from 2D and 3D CycleGANs. In stage 2, we
replace the images from 2D CycleGANs with real hrT2 images for self-training.
In stage 3, we apply offline VS augmentation and oversample the pseudo hrT2
images with small tumors, as we observe on the validation leaderboard that the
small-tumor segmentation performance of our network is low. We oversample the
pseudo hrT2 images with small tumors based on the VS labels from ceT1 till
the training data size reaches 1000 (maximum number that nnU-Net allows). In
stage 4, we perform another round of self-training and use the ensemble model
from stages 2, 3, and 4 as our final model by averaging softmax probabilities.

4.3 Experimental Results

Synthesis Results. In Figure 4, we qualitatively show the effectiveness of the
cross-site cross-modality unpaired image translation. We select a representative
ceT1 image from site A and generate the pseudo hrT2 images using CycleGAN
#1, #2, and #5, which generate pseudo hrT2 from site A, site B, and a com-
bination of site A and site B, respectively. Two representative real hrT2 images
from site A and from site B are provided in Figure 4 for comparison. We observe
the consistency of the overall image contrast characteristics between the pseudo
and real images from the same site.
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Fig. 4. Synthesis results of the cross-site cross-modality unpaired image translation.
First row: source domain (ceT1) image. Second row: pseudo target domain (hrT2)
images. Third row: real target domain (hrT2) images as reference.

Segmentation Results. For quantitative evaluation, we submit our segmenta-
tion results to the validation leaderboard, where the Dice score and average sym-
metric surface distance (ASSD) between segmentation results and the ground
truth are computed. In Table 1, we show the segmentation results for both VS
and cochlea obtained at each training stage (the configurations are described in
detail in Section 3.2). We notice that the largest improvement is observed from
stage 1 to stage 2, when the model is trained on real target domain images for the
first time. Moreover, the effectiveness of our proposed offline VS augmentation
and small-tumor oversampling is demonstrated by the improvement observed
from stage 2 to stage 3. Lastly, the mean Dice scores and ASSDs achieved by
our final ensemble model are 0.8178 ± 0.0803 and 0.8433 ± 0.0293, and 0.6673
± 0.2713 mm and 0.2053 ± 0.1489 mm for VS and cochlea, respectively. For
qualitative evaluation, we visualize the segmentation results in Figure 5 for four
representative cases (a and b are from site A; c and d are from site B). We posit
that the poor VS segmentation, i.e., f and h, is due to the uncommon appear-
ances of VS in the validation set, which can be difficult to synthesize if such
appearances rarely exist in our target domain training dataset.

5 Discussion and Conclusion

In the CrossMoDA 2021 challenge, we have observed that there were three im-
portant components used by the top teams including (1) segmentation via nnU-
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Fig. 5. Qualitative results on the validation set. The first row and the second row
correspond to the hrT2 images and their segmentation results, respectively. Note that
a, b and c, d are from different sites.

Table 1. Quantitative results on the validation leaderboard

Dice↑ (%) ASSD↓ (mm)
Stage VS Cochlea VS Cochlea

1 73.54±24.26 81.91±4.33 1.89±8.41 0.25±0.15
2 77.97±18.29 82.42±4.01 0.72±0.29 0.23±0.15
3 80.37±9.64 84.46±2.97 1.14±1.73 0.22±0.18

ensemble 81.78±8.03 84.33±2.93 0.67±0.27 0.21±0.15

Net [1, 3, 18], (2) self-training with real target domain data [3, 18], and (3) data
augmentation for VS and cochlea [1,11]. Based on this observation, our proposed
method for CrossMoDA 2022 also incorporates these components to achieve com-
petitive performance on the leaderboard. To address the additional domain gap
(multi-site MRI) in CrossMoDA 2022, we synthesize site-specific pseudo target
domain images with multiple CycleGAN models. Nevertheless, we conjecture
that the segmentation performance might be further improved if we also train
site-specific target domain segmentation models; this will be investigated.

In conclusion, we proposed a solution to tackle the UDA problem for VS
and cochlea segmentation in CrossMoDA 2022. We developed a cross-site cross-
modality unpaired image translation strategy to enrich the diversity of the syn-
thesized data and a rule-based offline augmentation method to further minimize
the domain gap. Lastly, we empowered the nnU-Net by self-training to make use
of the unlabeled data. According to the validation leaderboard, our method has
achieved a promising segmentation performance on both VS and cochlea.
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