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Abstract. The Koos grading scale is a classification system for vestibular 
schwannoma (VS) used to characterize the tumor and its effects on adjacent 
brain structures. The Koos classification captures many of the characteristics of 
treatment decisions and is often used to determine treatment plans. Although 
both contrast-enhanced T1 (ceT1) scanning and high-resolution T2 (hrT2) 
scanning can be used for Koos Classification, hrT2 scanning is gaining interest 
because of its higher safety and cost-effectiveness. However, in the absence of 
annotations for hrT2 scans, deep learning methods often inevitably suffer from 
performance degradation due to unsupervised learning. If ceT1 scans and their 
annotations can be used for unsupervised learning of hrT2 scans, the perfor-
mance of Koos classification using unlabeled hrT2 scans will be greatly im-
proved. In this regard, we propose an unsupervised cross-modality domain ad-
aptation method based on image translation by transforming annotated ceT1 
scans into hrT2 modality and using their annotations to achieve supervised 
learning of hrT2 modality. Then, the VS and 7 adjacent brain structures related 
to Koos classification in hrT2 scans were segmented. Finally, handcrafted fea-
tures are extracted from the segmentation results, and Koos grade is classified 
using a random forest classifier. The proposed method received rank 1 on the 
Koos classification task of the Cross-Modality Domain Adaptation (cross-
MoDA 2022) challenge, with Macro-Averaged Mean Absolute Error (MA-
MAE) of 0.2148 for the validation set and 0.26 for the test set. 

Keywords: Unsupervised domain adaptation, Image translation, Vestibular 
schwannoma. 

1 Introduction 

Vestibular schwannoma (VS) is a benign, slow-growing tumor that occurs in the inner 
auditory canal from the inner ear to the brain [1]. The Koos grading scale is a classifi-
cation system for vestibular schwannoma used to characterize the tumor and its ef-
fects on adjacent brain structures. Specifically, the Koos grading of VS is primarily 
determined by tumor size, location, and degree of compression of adjacent brain 
structures. The Koos classification captures many of the characteristics of treatment 
decisions and is often used to determine treatment plans. Specifically, the Koos grad-
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ing scale divides vestibular schwannoma into four grades according to criteria, as 
shown in Fig. 1. In recent years, with the advent of deep learning, it has become pos-
sible to improve patient outcomes and experience through standardization and per-
sonalization of VS treatment, while also significantly reducing physician workload 
[2]. So far, some deep learning-based VS automatic segmentation frameworks [3, 4] 
have been developed and demonstrated high segmentation accuracy on large real-
world datasets. Meanwhile, a recent work [1] achieves automated classification of 
Koos rank through accurate segmentation of VS and adjacent brain structures. 

 

Fig. 1. The Koos grading scale with representative ceT1 and hrT2 images. Image courtesy to 
Kujawa [1]. 

However, Koos classification still faces challenges in practical applications, such 
as unsupervised, since medical data annotation is often time-consuming and expen-
sive, and there is often the problem of domain shift between different imaging mo-
dalities. Unsupervised domain adaptation (UDA) has received much attention in the 
medical field because it does not require any additional annotation. However, the 
medical field lacks large benchmarks to evaluate the performance of UDA methods. 
crossMoDA is the first large multi-class benchmark for unsupervised cross-modality 
domain adaptation [5, 6]. The goal of the classification task of the crossMoDA 2022 
challenge is to automate the Koos classification of VS from magnetic resonance im-
aging (MRI). The ceT1 scans are commonly used for Koos classification, but recent 
studies have shown the use of non-contrast imaging sequences, such as hrT2 imaging, 
can mitigate the risks associated with gadolinium-containing contrast agents. Fur-
thermore, hrT2 imaging is more cost-efficient than ceT1 imaging. Therefore, the clas-
sification task of the crossMoDA 2022 challenge aims to automatically determine the 
Koos grade on unlabeled hrT2 scans using only labeled ceT1 scans based on the un-
supervised domain adaptive approach. In this regard, we propose an unsupervised 
cross-modality domain adaptation method based on image translation by transforming 
annotated ceT1 scans into hrT2 modality and using their annotations to achieve su-
pervised learning of hrT2 modality. Then, the VS and 7 adjacent brain structures re-
lated to Koos classification in hrT2 scans were segmented. Finally, handcrafted fea-
tures are extracted from the segmentation results, and Koos grade is classified using a 
random forest classifier. The contributions of this paper are as follows: 
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 We propose an unsupervised cross-modality domain adaptation method for auto-
matic Koos classification based on image translation. 

 Image translation generates target modality images through image contrast trans-
formation, thereby transferring the supervision information from the source domain 
into the target domain. 

 The proposed method is validated on the challenging task of unsupervised cross-
modality domain adaptation for Koos classification, outperforming other methods. 

2 Related Work 

In this section, we will present some work related to our proposed method, including 
Koos classification and unsupervised cross-modality domain adaptation. 

2.1 Koos Classification 

Koos classification system has been demonstrated to be a reliable method for vestibu-
lar schwannoma classification [7]. However, only recently have the first machine 
learning frameworks [1] for automatic Koos classification emerged. Before this, Koos 
grades of vestibular schwannoma could only be hand-labeled by neurosurgeons. Spe-
cifically, Kujawa [1] proposed a two-stage approach that implements classification 
after an initial segmentation stage. In the first stage, the VS and important adjacent 
brain structures are segmented. The segmentation annotations of these brain structures 
are obtained by the geodesic information flows (GIF) algorithm [8] rather than by 
hand. In the second stage, two complementary methods are used to perform Koos 
classification. The first method directly uses the dense convolutional network 
(DenseNet) [9] to classify the segmentation results of the first stage. The second 
method further extracts handcrafted features from the segmentation and then uses a 
random forest [10] for classification. Experimental results on a large dataset show that 
the performance of the method is comparable to that of neurosurgeons [1]. However, 
this method is based on supervised learning and lacks the ability of cross-modality 
domain adaptation for the unsupervised Koos classification task. 

2.2 Unsupervised Cross-modality Domain Adaptation 

Unlike natural images, medical images often have multiple complementary but heter-
ogeneous modalities. Using the annotation information of one modality to help anoth-
er modality build a task model can effectively reduce the annotation cost. Therefore, 
to bridge the differences between different imaging modalities, many cross-modality 
adaptation methods have emerged. Yang [11] proposed to find a shared content space 
through disentangled representations, enabling cross-modality domain adaptation 
between computed tomography (CT) and MRI images. The method embeds images 
from each domain into two spaces, a shared domain-invariant content space, and a 
domain-specific style space, and then performs tasks with representations in the con-
tent space. Chen [12] proposed synergistic image and feature alignment (SIFA), an 
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unsupervised domain adaptation framework between MRI and CT images for cardiac 
substructure segmentation and abdominal multi-organ segmentation. However, these 
unsupervised cross-modality domain adaptation methods did not aim at our topic of 
the adaptation between ceT1 and hrT2 modalities. 

For the adaptation between ceT1 and hrT2 modalities, Shin [13] proposed a self-
training based unsupervised domain adaptation framework (COSMOS) for 3D medi-
cal image segmentation and validate it with automatic segmentation of VS and coch-
lea. The COSMOS realizes the modality transformation of the image through the 
target-aware contrast conversion network, while preserving the task features in the 
image during the transformation process. In addition, the method utilizes self-training 
[14] to iteratively improve segmentation performance. For the same task, Dong [15] 
proposed an unsupervised cross-modality domain adaptation approach based on pixel 
alignment and self-training (PAST). During training, pixel alignment is applied to 
transfer ceT1 scans to hrT2 modality to reduce the domain shift. Besides, Choi [16] 
proposed a domain adaptation method based on out-of-the-box deep learning frame-
works for image translation and segmentation. In this method, an unpaired image-to-
image translation model (CUT) based on patch-wise contrastive learning and adver-
sarial learning is used for cross-modality domain adaptation. These unsupervised 
cross-modality adaptation methods achieve good results on VS and cochlea segmenta-
tion tasks. However, these adaptation methods that focus on segmentation tasks can-
not be directly applied to the Koos classification task. 

3 Methods 

Our method consists of two parts: image translation and Koos classification, and the 
overall framework is shown in Fig. 2. 

 

Fig. 2. The framework of Koos classification via image translation-based unsupervised cross-
modality domain adaptation. 
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As shown in Fig. 2, image translation converts real ceT1 scans to the modality of 
hrT2 scans through an adversarial network, thus generating pseudo hrT2 scans. Koos 
classification consists of three steps. 1) Training a segmentation model in a supervised 
manner by using pseudo hrT2 scans and real labels. The trained segmentation model 
is used to predict the real hrT2 scans to generate brain structural segmentation. 2) 
Extracting handcrafted features from brain structure segmentation. 3) Training a ran-
dom forest classifier for Koos grade prediction with handcrafted features extracted 
from the training set. 

3.1 Image Translation 

Since the source and target domain images in the training set provided by the cross-
MoDA 2022 challenge are unpaired, we choose cycle-consistent adversarial networks 
(CycleGAN) [17] for image translation, i.e., we use CycleGAN to convert annotated 
ceT1 scans to hrT2 scans. CycleGAN achieved good results in the crossMoDA 2021 
challenge [6, 13], which demonstrated the effectiveness of CycleGAN in bridging the 
gap between ceT1 scans and hrT2 scans. The typical CycleGAN is applied to 2D 
images, so all 3D images in the training set (including ceT1 scans and hrT2 scans) are 
sliced along the z-axis to obtain 2D images. Due to the different scanners used, the in-
plane matrix sizes of the 3D images in the source and target domains do not match, 
which also leads to inconsistent sizes of the acquired 2D images. In this regard, we 
resize the image to a uniform size and do not crop the image so that CycleGAN has a 
global receptive field for the input image. In addition, considering the large computa-
tional effort of CycleGAN for image translation, we resize the original 2D image to 
the smallest size among all image sizes in the source and target domains. Specifically, 
the original 2D image is down-sampled to the smallest size among all image sizes in 
the source and target domains using the bicubic interpolation method. Then, the 
resized 2D images are fed directly into CycleGAN for training. According to previous 
work [15], the residual neural network (ResNet) was chosen as the generator of Cy-
cleGAN instead of U-net, while for the discriminator the default PatchGAN was cho-
sen. After the training is completed, the annotated ceT1 scans can be translated into 
hrT2 scans using CycleGAN, thus training the segmentation model with the generated 
hrT2 scans in a supervised manner. 

3.2 Koos Classification 

We can train the segmentation model in a supervised manner by using the generated 
pseudo hrT2 scans and their corresponding annotations to be able to segment brain 
structures relevant to Koos classification in real hrT2 scans. According to previous 
work [1], there are 8 brain structures most relevant to Koos classification, including 
VS, pons, brainstem, cerebellar vermal lobules I-V, VI-VII, and VIII-X, left cerebel-
lum (including the left cerebellum exterior and the left cerebellum white matter) and 
right cerebellum (including the right cerebellum exterior and the right cerebellum 
white matter). As in the previous work [16], we use the default 3D full resolution U-
Net configuration of the nnU-Net [18] framework for training and inference for the 
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brain structures segmentation task. The segmentation annotations of these brain struc-
tures are provided by the crossMoDA 2022 challenge and are initially obtained by the 
geodesic information flows (GIF) algorithm [8]. nnU-Net automates and condenses 
the critical decisions required to construct a successful segmentation pipeline for any 
given dataset [18]. Specifically, it is an out-of-the-box standardized segmentation 
framework that can self-configure the preprocessing, network architecture, and train-
ing pipeline for a given task without the need for manual intervention [13]. Therefore, 
we keep all automated configurations of nnU-Net without any modification to them. It 
is worth mentioning that, to reduce the large amount of training time caused by the 
nnU-Net's default 5-fold cross-validation, we did not use cross-validation, but used all 
the data to train a single segmentation model. 

Eight brain structures and backgrounds are segmented on real hrT2 scans using the 
trained U-Net segmentation model. According to previous work [1], three handcrafted 
features are extracted for some structural segmentation masks and background masks, 
including volume, the shortest distance to the VS (DistVS), and contact surface with 
the VS (SurfVS). The left and right labels (left cerebellum and right cerebellum) are 
then transformed into ipsilateral and contralateral labels (ipsilateral cerebellum and 
contralateral cerebellum) related to the VS position to improve the classification per-
formance. All the handcrafted features extracted are shown in Table 1. Based on 
these handcrafted features, a random forest classifier was trained on the training set 
and used to predict the Koos grade of patients. 

Table 1. Handcrafted features extracted for Koos classification. 

 Handcrafted features 

Structures Volume DistVS SurfVS 

Vestibular schwannoma (VS) √   

Pons  √  

Brain stem  √  

Cerebellar vermal lobules I-V  √  

Cerebellar vermal lobules VI-VII  √  

Cerebellar vermal lobules VIII-X  √  

Ipsilateral cerebellum  √  

Contralateral cerebellum  √  

Background   √ 

4 Experiments 

4.1 Dataset 

All experimental data are provided by the crossMoDA 2022 challenge. The experi-
mental data were obtained from two different hospitals, London hospital, and Tilburg 
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hospital. For the London hospital, all images were obtained on a 32-channel Siemens 
Avanto 1.5T scanner using a Siemens single-channel head coil. For the Tilburg hospi-
tal, all images were obtained on a Philips Ingenia 1.5T scanner using a Philips quadra-
ture head coil. A detailed description of the experimental data is shown in Table 2. 
All 3D images in the training set (including ceT1 scans and hrT2 scans) are sliced 
along the z-axis to obtain 2D images. Then, the 2D image is down-sampled to 
256×256 using the bicubic interpolation method. Other than that, no other processing 
of the data is performed. 

Table 2. The summary of data characteristics of the dataset. 

 Training set Validation set 

 Source Target Target 

Hospital London Tilburg London Tilburg London Tilburg 

Sequence ceT1 ceT1 hrT2 hrT2 hrT2 hrT2 hrT2 hrT2 

Number of 
scans 

105 105 83 22 105 28 4 32 

Annotation √ √ × × × × × × 

In-plane 
matrix 

512×512 256×256 448×448 384×384 512×512 448×448 384×384 512×512 

4.2 Evaluation Metrics 

The macro-averaged mean absolute error (MA-MAE) [19] was used to evaluate the 
accuracy of the classification results. The MA-MAE is well-designed for ordinal and 
imbalanced classification problems and is defined as: 
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where n  represents the number of all images, jT  is the set of images with the true 

class label jy , ( )iP x  and iy  are the predicted class label and true class label of the 

image ix , respectively. 

4.3 Experimental Settings 

Image translation: For CycleGAN, the weights of adversarial loss, cycle consistency 
loss, and identity loss are set to 1:10:5 by default. The training batch size is set to 10. 
The network was trained with Adam optimizer for 200 epochs, the first 100 epochs 
maintain an initial learning rate of 0.00015, and the latter 100 epochs decay linearly. 
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Koos classification: The settings for the random forest are default, but the number of 
trees is 100000, the maximum tree depth is 5, and the minimum number of samples 
per leaf is 2. 

4.4 Experimental Results 

All models were implemented in PyTorch 1.10 and trained and inference on an RTX 
3090 GPU with 24GB of memory. The proposed method was trained on the training 
set (182 non-postoperative cases) and used to predict the Koos grade of patients in the 
validation and test sets. The proposed method received rank 1 on the Koos classifica-
tion task of the crossMoDA 2022 challenge, with MA-MAE of 0.2148 for the valida-
tion set and 0.26 for the test set. 

5 Discussion 

Although our proposed method achieves the best results, this still falls short of the 
performance (0.14 ± 0.06) [1] of fully-supervised random forest classification using 
hrT2 scans. Currently, the best Koos classification performance (0.11 ± 0.05) in fully-
supervised scenarios is already comparable to professional doctors (0.11 ± 0.08) [1]. 
Therefore, the main bottleneck in unsupervised cross-modality Koos classification 
performance is the modality difference, the brain structures associated with Koos 
classification in ceT1 scans, including VS, are not fully converted to hrT2 modality. 
In addition, the degradation of segmentation performance caused by modality differ-
ence will also further increase the error of downstream Koos classification task. 
Therefore, it is more difficult for the unsupervised cross-modality Koos classification 
task to achieve fully-supervised accuracy than for the unsupervised cross-modality 
VS segmentation task. Fortunately, the unsupervised cross-modality segmentation 
performance of VS is already close to fully-supervised approaches [6, 13, 20]. There-
fore, if the adaption performance of other brain structures related to Koos classifica-
tion can be improved, the performance of unsupervised cross-modality Koos classifi-
cation will likely be comparable to the fully-supervised approaches and professional 
doctors. 

6 Conclusion 

This paper proposed an image translation-based unsupervised cross-modality domain 
adaptation method for Koos classification of vestibular schwannoma. The classifica-
tion performance on real datasets confirms that the proposed method has good cross-
modality domain adaptability. In clinical practice, this domain adaptation method can 
effectively process unlabeled hrT2 modality images, thereby reducing the annotation 
cost and improving the diagnostic efficiency to a certain extent. 
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